

Chapter 01

Lecture Outline

See separate Image PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.

Chapter 1

Keys to the Study of Chemistry

Chapter 1: Keys to the Study of Chemistry

1.1 Some Fundamental Definitions
1.2 The Scientific Approach. Developing a Modet
1.3-Chemical-Problem-Solving-
1.4 Measurement in Scientific Study
1.5 Uncertainty in Measurement: Significant Figures

Chemistry

Chemistry is the study of matter, its properties,
the changes that matter undergoes, and
the energy associated with these changes.

Definitions

Matter
anything that has both mass and volume

- the "stuff" of the universe: books, planets, trees, professors, students

Composition the types and amounts of simpler substances that make up a sample of matter

Properties the characteristics that give each substance a unique identity

Physical Properties

properties a substance shows by itself without interacting with another substance

- color, melting point, boiling point, density

Chemical Properties

properties a substance shows as it interacts with, or transforms into, other substances

- flammability, corrosiveness

Figure 1.1 The distinction between physical and chemical change.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Physical change:
Solid form of water becomes liquid form; composition does not change because particles are the same.

B Chemical change:
Electric current decomposes water into different substances (hydrogen and oxygen); composition does change because particles are different.

Sample Problem 1.1

PROBLEM: The scenes below represent an atomic-scale view of substance A undergoing two different changes. Decide whether each scene shows a physical or a chemical change.

> Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLAN: We need to determine what change is taking place. The numbers and colors of the little spheres that represent each particle tell its "composition". If the composition does not change, the change is physical, whereas a chemical change results in a change of composition.

Sample Problem 1.1

SOLUTION:

Each particle of substance A is composed of one blue and two red spheres.

Sample B is composed of two different types of particles - some have two red spheres while some have one red and one blue.

As A changes to B, the chemical composition has changed.
$A \rightarrow B$ is a chemical change.

Sample Problem 1.1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Each particle of C is still composed of one blue and two red spheres, but the particles are closer together and are more organized. The composition remains unchanged, but the physical form is different.
$A \rightarrow C$ is a physical change.

The States of Matter

A solid has a fixed shape and volume. Solids may be hard or soft, rigid or flexible.

A liquid has a varying shape that conforms to the shape of the container, but a fixed volume. A liquid has an upper surface.

A gas has no fixed shape or volume and therefore does not have a surface.

Figure 1.2 The physical states of matter.

Temperature and Change of State

- A change of state is a physical change.
- Physical form changes, composition does not.
- Changes in physical state are reversible
- by changing the temperature.
- A chemical change cannot simply be reversed by a change in temperature.

Distinguishing Between Physical and Chemical Change

PROBLEM: Decide whether each of the following processes is primarily a physical or a chemical change, and explain briefly:
(a) Frost forms as the temperature drops on a humid winter night.
(b) A cornstalk grows from a seed that is watered and fertilized.
(c) A match ignites to form ash and a mixture of gases.
(d) Perspiration evaporates when you relax after jogging.
(e) A silver fork tarnishes slowly in air.

PLAN: "Does the substance change composition or just change form?"

SOLUTION:

(a) Frost forms as the temperature drops on a humid winter night. physical change
(b) A cornstalk grows from a seed that is watered and fertilized.
chemical change
(c) A match ignites to form ash and a mixture of gases. chemical change
(d) Perspiration evaporates when you relax after jogging.
physical change
(e) A silver fork tarnishes slowly in air.
chemical change

Energy in Chemistry

Energy is the ability to do work.

Potential Energy is energy due to the position of an object.

Kinetic Energy

is energy due to the movement of an object.

Total Energy = Potential Energy + Kinetic Energy

Energy Changes

Lowerenergy states are more stable and are favored over higher energy states.

Energy is neither created nor destroyed

- it is conserved
- and can be converted from one form to another.

Figure 1.3A Potential energy is converted to kinetic energy.

A A gravitational system. Potential energy is gained when a weight is lifted. It is converted to kinetic energy as the weight falls.

A gravitational system. The potential energy gained when a lifted weight is converted to kinetic energy as the weight falls.

A lower energy state is more stable.

Figure 1.3B Potential energy is converted to kinetic energy.

A system of two balls attached by a spring. The potential energy gained by a stretched spring is converted to kinetic energy when the moving balls are released.

Energy is conserved when it is transformed.

Figure 1.3C Potential energy is converted to kinetic energy.

A system of oppositely charged particles. The potential energy gained when the charges are separated is converted to kinetic energy as the attraction pulls these charges together.

Figure 1.3D Potential energy is converted to kinetic energy.

A system of fuel and exhaust. A fuel is higher in chemical potential energy than the exhaust. As the fuel burns, some of its potential energy is converted to the kinetic energy of the moving car.

Chemical Problem Solving

- All measuredquantities consist of
- a number and a unit.
- Units are manipulated kike pumbers:
$-3 \mathrm{ft} \times 4 \mathrm{ft}=12 \mathrm{ft}^{2}$
$-\frac{350 \mathrm{mi}}{7 \mathrm{~h}}=\frac{50 \mathrm{mi}}{1 \mathrm{~h}}$ or $50 \mathrm{mi} . \mathrm{hi}^{-1}$

Conversion Factors

A conversionfactor is a ratio of equivalent quantities used to express a quantity in different units.

The relationship 1 prii $=5280 \mathrm{ft}$ gives us the conversion factor:

Asenversion factor is chosen and set up so that all units cancel except those required for the answer.

PROBLEM: The height ofthe Angel Falls is 3212 ft . Express this quantity in miles (mi) if $1 \mathrm{mi}=5280 \mathrm{ft}$.

PLAN: Set up the conversion factor so that ft will cancel and the answer will be in mi .

SOLUTION:

Systematic Approach to Solving Chemistry Problems

- State Rroblem
- Plan \longrightarrow Suggest steps from known to unknown.

Prepare a visual summary of steps that includes conversion factors, equations, known variables.

- Solution
- Check
- Comprent
- Foliow-up Problem price of the wire?
PLAN: We know the length (in cm) of yire and cost per length ($\$ / \mathrm{ft}$). We have to cenvert cm to inches and inches to feet.
Then we can find the costyor the length in feet.

$2.54 \mathrm{~cm}=1 \mathrm{in}$
length (in) of wire
$12 \mathrm{in}=1 \mathrm{ft}$
length (ft) of wire
$1 \mathrm{ft}=\$ 0.15$
Price (\$) of wire

SOLUTION:

Length (in) = length (cm) \times conversion factor

$$
=325 \mathrm{~cm} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=128 \mathrm{in}
$$

Length $(\mathrm{ft})=$ length (in) \times conversion factor
$=128 \mathrm{in} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}}=10.7 \mathrm{ft}$
Price $(\$)=$ length $(\mathrm{ft}) \times$ conversion factor

$$
=10.7 \text { fy } \times \frac{\$ 0.15}{1 \mathrm{ft}}=\$ 1.60
$$

1.4 Measurements in scientific study (SI Units)

Seven fundamental units (base Units)

Table 1.1 SI Base Units		
Physical Quantity (Dimension)	Unit Name	Unit Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	s
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

All others are derived units and used as conversion factors
(speed: m/s)

Table	1.2	Common Decimal Prefixes Used with SI Units		
	Prefix			
Prefix*	Symbol	Word	Conventional Notation	Exponential Notation
tera	T	trillion	$1,000,000,000,000$	1×10^{12}
giga	G	billion	$1,000,000,000$	1×10^{9}
mega	M	million	$1,000,000$	1×10^{6}
kilo	k	thousand	1,000	1×10^{3}
hecto	h	hundred	100	1×10^{2}
deka	da	ten	10	1×10^{1}
-	-	one	1	1×10^{0}
deci	d	tenth	0.1	1×10^{-1}
centi	c	hundredth	0.01	1×10^{-2}
milli	m	thousandth	0.001	1×10^{-3}
micro	μ	millionth	0.000001	1×10^{-6}
nano	n	billionth	0.000000001	1×10^{-9}
pico	p	trillionth	0.000000000001	1×10^{-12}
femto	f	quadrillionth	0.000000000000001	1×10^{-15}

*The prefixes most frequently used by chemists appear in bold type.

Table 1.3 Common SI-English Equivalent Quantities

Quantity SI to English Equivalent

Length
1 km = 0.6214 mile
$1 \mathrm{~m}=1.094 \mathrm{yd}$
1 m = 39.37 inches
$1 \mathrm{~cm}=0.3937$ inch
Volume
$1{\text { cubic meter }\left(\mathrm{m}^{3}\right)=35.31 \mathrm{ft}^{3}}_{1 \mathrm{dm}^{3}=0.2642 \mathrm{gal}}^{1 \mathrm{dm}^{3}=1.057 \mathrm{qt}}$
$1 \mathrm{~cm}^{3}=0.03381$ fluid ounce

Mass $\quad 1 \mathrm{~kg}=\mathbf{2 . 2 0 5 ~ l b}$
$1 \mathrm{~g}=0.03527$ ounce (oz)

English to SI Equivalent
$1 \mathrm{mi}=1.609 \mathrm{~km}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{ft}=0.3048 \mathrm{~m}$
$1 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{ft}^{3}=0.02832 \mathrm{~m}^{3}$
1 gal $=3.785 \mathrm{dm}^{3}$
$1 \mathrm{qt}=0.9464 \mathrm{dm}^{3}$
1 qt $=946.4 \mathrm{~cm}^{3}$
1 fluid ounce $=29.57 \mathbf{c m}^{\mathbf{3}}$
$1 \mathrm{lb}=0.4536 \mathrm{~kg}$
$1 \mathrm{oz}=28.35 \mathrm{~g}$

Figure 1.5 Common laboratory volumetric glassware.

Converting Units of Volume

PROBLEM: A graduated cylinder contains 19.9 mL of water. When a small piece of galena, an ore of lead, is added, it sinks and the volume increases to 24.5 mL . What is the volume of the piece of galena in cm^{3} and in L ?

PLAN: The volume of the galena is equal to the difference in the volume of the water before and after the addition.
volume (mL) before and after
subtract
volume (mL) of galena
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

volume (cm^{3}) of galena

$1 \mathrm{~mL}=10^{-3} \mathrm{~L}$
volume (L)
of galena

SOLUTION:

(24.5-19.9) $\mathrm{mL}=$ volume of galena $=4.6 \mathrm{~mL}$
$4.6 \mathrm{ml} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{ml}}=4.6 \mathrm{~cm}^{3}$
$4.6 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=4.6 \times 10^{-3} \mathrm{~L}$

PROBLEM: Many international computer communications are carried out by optical fibers in cables laid along the ocean floor. If one strand of optical fiber weighs $1.19 \times 10^{-3} \mathrm{lb} / \mathrm{m}$, what is the mass (in kg) of a cable made of six strands of optical fiber, each long enough to link New York and Paris (8.94×10^{3} km)?
PLAN: The sequence of steps may vary but essentially we need to find the length of the entire cable and convert it to mass.
length (km) of fiber
$1 \mathrm{~km}=10^{3} \mathrm{~m}$
length (m) of fiber
$1 \mathrm{~m}=1.19 \times 10^{-3} \mathrm{lb}$
mass (lb) of fiber
6 fibers $=1$ cable $\quad 2.205 \mathrm{lb}=1 \mathrm{~kg}$
mass (lb) of cable
Mass (kg) of cable

Sample Problem 1.5

SOLUTION:

$$
\begin{aligned}
& 8.84 \times 10^{3} \mathrm{~km} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}=8.84 \times 10^{6} \mathrm{~m} \\
& 8.84 \times 10^{6} \mathrm{~m} \times \frac{1.19 \times 10^{-3} \mathrm{lb}}{1 \mathrm{~m}}=1.05 \times 10^{4} \mathrm{lb} \\
& \frac{1.05 \times 10^{4} \mathrm{lb}}{1 \text { fibert }} \times \frac{6 \text { fibers }}{1 \text { cable }}=6.30 \times 10^{4} \mathrm{lb} / \text { cable } \\
& \frac{6.30 \times 10^{4} \mathrm{lb}}{1 \text { cable }} \times \frac{1 \mathrm{~kg}}{2.205 \mathrm{Hb}}=2.86 \times 10^{4} \mathrm{~kg} / \text { cable }
\end{aligned}
$$

Density

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

At a given temperature and pressure, the density of a substance is a characteristic physical property and has a specific value.

Table $\mathbf{1 . 4}$	Densities of Some Common Substances*	
Substance	Physical State	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Hydrogen	gas	0.0000899
Oxygen	gas	0.00133
Grain alcohol	liquid	0.789
Water	liquid	0.998
Table salt	solid	2.16
Aluminum	solid	2.70
Lead	solid	11.3
Gold	solid	19.3

*At room temperature $\left(20^{\circ} \mathrm{C}\right)$ and normal atmospheric pressure (1 atm).

PROBLEM: Lithium, a soft, gray solid with the lowest density of any metal, is a key component of advanced batteries. A slab of lithium weighs $1.49 \times 10^{3} \mathrm{mg}$ and has sides that are 20.9 mm by 11.1 mm by 11.9 mm . Find the density of lithium in $\mathrm{g} / \mathrm{cm}^{3}$.
PLAN: Density is expressed in $\mathrm{g} / \mathrm{cm}^{3}$ so we need the mass in g and the volume in cm^{3}.

SOLUTION:

$1.49 \times 10^{3} \mathrm{mg} \times \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}}=1.49 \mathrm{~g}$
$20.9 \mathrm{~mm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=2.09 \mathrm{~cm}$
Similarly the other sides will be 1.11 cm and 1.19 cm , respectively.
Volume $=2.09 \times 1.11 \times 1.19=2.76 \mathrm{~cm}^{3}$
density of $\mathrm{Li}=\frac{1.49 \mathrm{~g}}{2.76 \mathrm{~cm}^{3}}=\mathbf{0 . 5 4 0} \mathbf{~ g} / \mathrm{cm}^{3}$

Temperature Scales

Temperature (T) : is a measure of how hot or cold one object is relative to another.(Thermometer)

Heat : is energy that flows from the object of higher (T) to object of lower (T).
Kelvin (K) - The "absolute temperature scale" begins at absolute zero and has only positive values. Note that the kelvin is not used with the degree sign (${ }^{\circ}$).

Celsius (${ }^{\circ} \mathrm{C}$) - The Celsius scale is based on the freezing and boiling points of water. This is the temperature scale used most commonly around the world. The Celsius and Kelvin scales use the same size degree although their starting points differ.

Fahrenheit (${ }^{\circ} \mathrm{F}$) - The Fahrenheit scale is commonly used in the US. The Fahrenheit scale has a different degree size and different zero points than both the Celsius and Kelvin scales.

Figure 1.6 Freezing and boiling points of water in the Celsius, Kelvin (absolute) and Fahrenheit scales.

UPLOADED BY AHMAD T JUNDI

Temperature Conversions

$T\left(\right.$ in K) $=T\left(\right.$ in $\left.^{\circ} \mathrm{C}\right)+273.15$
$\mathrm{T}\left(\right.$ in $\left.^{\circ} \mathrm{C}\right)=\mathrm{T}($ in K) - 273.15

$$
\mathrm{T}\left(\text { in }^{\circ} \mathrm{F}\right)=\frac{9}{5} \mathrm{~T}\left(\text { in }^{\circ} \mathrm{C}\right)+32
$$

$$
T\left(\text { in }^{\circ} \mathrm{C}\right)=\left[\mathrm{T}\left(\text { in }^{\circ} \mathrm{F}\right)-32\right] \frac{5}{9}
$$

PROBLEM: A child has a body temperature of $38.7^{\circ} \mathrm{C}$, and normal body temperature is $98.6^{\circ} \mathrm{F}$. Does the child have a fever? What is the child's temperature in kelvins?

PLAN: We have to convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ to find out if the child has a fever. We can then use the ${ }^{\circ} \mathrm{C}$ to Kelvin relationship to find the temperature in Kelvin.

SOLUTION:

Converting from ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F} \quad \frac{9}{5}\left(38.7^{\circ} \mathrm{C}\right)+32=101.7^{\circ} \mathrm{F}$
Yes, the child has a fever.

Converting from ${ }^{\circ} \mathrm{C}$ to $\mathrm{K} \quad 38.7^{\circ} \mathrm{C}+273.15=311.8 \mathrm{~K}$

Significant Figures

Every measurement includes some uncertainty. The rightmost digit of any quantity is always estimated.

The recorded digits, both certain and uncertain, are called significant figures.

The greater the number of significant figures in a quantity, the greater its certainty.

UPLOADED BY AHMAD T JUNDI
Figure 1.7 The number of significant figures in a measurement.

This measurement is known with more certainty because it has more significant figures.

Determining Which Digits are Significant

All digits are significant

- except zeros that are used only to position the decimal point.
- Make sure the measured quantity has a decimal point.
- Start at the left and move right until you reach the first nonzero digit.
- Count that digit and every digit to its right as significant.
- Zeros that end a number are significant as long as a decimal point is present.
- 1.030 mL has 4 significant figures.
- 5300. L has 4 significant figures.
- If there is no decimal point is present
- zeros at the end of the number are not significant. unless exponential notation clarify the quantity
- 5300 L has only 2 significant figures
- 5.300 * 10^{3} has 4 significant figures

Sample Problem 1.8 Determining the Number of Significant Figures

PROBLEM: For each of the following quantities, underline the zeros that are significant figures (sf), and determine the number of significant figures in each quantity. For (d) to (f), express each in exponential notation first.
(a) 0.0030 L
(b) 0.1044 g
(c) $53,069 \mathrm{~mL}$
(d) 0.00004715 m
(e) $57,600 . \mathrm{s}$
(f) $0.0000007160 \mathrm{~cm}^{3}$

PLAN: We determine the number of significant figures by counting digits, paying particular attention to the position of zeros in relation to the decimal point, and underline zeros that are significant.

Sample Problem 1.8

SOLUTION:

(a) 0.0030 L has $2 \mathbf{~ s f}$
(b) $0.1 \underline{0} 44 \mathrm{~g}$ has $4 \mathbf{~ s f}$
(c) $53,069 \mathrm{~mL}$ has $5 \mathbf{~ s f}$
(d) $0.00004715 \mathrm{~m}=4.715 \times 10^{-5} \mathrm{~m}$ has $4 \mathbf{~ s f}$
(e) $57,6 \underline{00} . \mathrm{s}=5.76 \underline{00} \times 10^{4} \mathrm{~s}$ has 5 sf
(f) $0.000000716 \underline{0} \mathrm{~cm}^{3}=7.160 \times 10^{-7} \mathrm{~cm}^{3}$ has 4 sf

Rules for Significant Figures in Calculations

1. For multiplication and division. The answer contains the same number of significant figures as there are in the measurement with the fewest significant figures.

Multiply the following numbers:
$9.2 \mathrm{~cm} \times 6.8 \mathrm{~cm} \times 0.3744 \mathrm{~cm}=23.4225 \mathrm{~cm}^{3}=23 \mathrm{~cm}^{3}$

Rules for Significant Figures in Calculations

2. For addition and subtraction. The answer has the same number of decimal places as there are in the measurement with the fewest decimal places.

Example: adding two volumes 83.5 mL

$$
\frac{+23.28 \mathrm{~mL}}{106.78 \mathrm{~mL}}=106.8 \mathrm{~mL}
$$

Example: subtracting two volumes 865.9 mL

- 2.8121 mL $863.0879 \mathrm{~mL}=863.1 \mathrm{~mL}$

Rules for Rounding Off Numbers

1. If the digit removed is more than 5 , the preceding number increases by 1 .
5.379 rounds to 5.38 if 3 significant figures are retained.
2. If the digit removed is less than 5, the preceding number is unchanged. 0.2413 rounds to 0.241 if 3 significant figures are retained.
3. If the digit removed is 5 followed by zeros or with no following digits, the preceding number increases by 1 if it is odd and remains unchanged if it is even.
17.75 rounds to 17.8 , but 17.65 rounds to 17.6 .

If the 5 is followed by other nonzero digits, rule 1 is followed:
17.6500 rounds to 17.6 , but 17.6513 rounds to 17.7
4. Be sure to carry two or more additional significant figures through a multistep calculation and round off the final answer only.

Exact Numbers

Exact numbers have no uncertainty associated with them.
Numbers may be exact by definition:
$1000 \mathrm{mg}=1 \mathrm{~g}$
$60 \mathrm{~min}=1 \mathrm{hr}$
$2.54 \mathrm{~cm}=1 \mathrm{in}$
Numbers may be exact by count: exactly 26 letters in the alphabet

Exact numbers do not limit the number of significant digits in a calculation.

Sample Problem 1.9

Significant Figures and Rounding

PROBLEM: Perform the following calculations and round each answer to the correct number of significant figures:
(a) $\frac{16.3521 \mathrm{~cm}^{2}-1.448 \mathrm{~cm}^{2}}{7.085 \mathrm{~cm}}$
(b) $\frac{4.80 \times 10^{4} \mathrm{mg}\left(\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}\right)}{11.55 \mathrm{~cm}^{3}}$

PLAN: We use the rules for rounding presented in the text: (a) We subtract before we divide. (b) We note that the unit conversion involves an exact number.

Sample Problem 1.9

SOLUTION:

(a) $\frac{16.3521 \mathrm{~cm}^{2}-1.448 \mathrm{~cm}^{2}}{7.085 \mathrm{~cm}}=\frac{14.904 \mathrm{~cm}^{2}}{7.085 \mathrm{~cm}}=2.104 \mathrm{~cm}$
(b) $\frac{4.80 \times 10^{4} \mathrm{mg}\left(\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}\right)}{11.55 \mathrm{~cm}^{3}}=\frac{48.0 \mathrm{~g}}{11.55 \mathrm{~cm}^{3}}=4.16 \mathrm{~g} / \mathrm{cm}^{3}$

Precision, Accuracy, and Error

Precision refers to how close the measurements in a series are to each other.

Accuracy refers to how close each measurement is to the actual value.

Systematic error produces values that are either all higher or all lower than the actual value.
This error is part of the experimental system.
Random error produces values that are both higher and lower than the actual value.

Figure 1.9 Precision and accuracy in a laboratory calibration.

Figure 1.9 continued

UPLOADED BY AHMAD T JUNDI
Upload By:Ahmad T AI -Jundi

Chapter 2

The Periodic Table and Some Properties of the Elements

uploDefinitionsifor Components of Matter

Matter can be classified in to three types based on it composition: elements, compounds and mixtures.
Substance : is matter whose composition is fixed. Mixtures?
Element - the simplest type of substance with unique physical and chemical properties. An element consists of only one type of atom. It cannot be broken down into any simpler substances by physical or chemical means. $\mathrm{Cu}, \mathrm{Ag}, \mathrm{N}_{2}, \mathrm{O}_{2}$

Figure 2.1

Definitions for Components of Matter

Compound - a substance composed of two or more elements which are chemically combined.
-Elements are present in fixed mass ratio.

$\mathbf{N H}_{3} \quad \mathbf{1 4} \mathbf{g ~ N}$ with $\mathbf{3} \mathbf{~ g ~ H}$

-Compound properties are different from its elements NaCl

Mixture - a group of two or more elements and/or compounds that are physically intermingled.

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}
$$

-Components of mixtures can vary in their parts.

- Mixtures retains many of the properties of its components
-Can be separated to its components by physical
D Mixture of two elements and a compound 2-4change.

Mixtures

A heterogeneous mixture has one or more visible boundaries between the components.

A homogeneous mixture has no visible boundaries because the components are mixed as individual atoms, ions, and molecules.

A homogeneous mixture is also called a solution. Solutions in water are called aqueous solutions.

Figure 2.17 The distinction between mixtures and compounds.

A physical mixture of Fe and S_{8} can be separated using a magnet.

Fe and S have reacted chemically to form the compound FeS. The elements cannot be separated by physical means.

Table 2.1 Some Properties of Sodium, Chlorine, and Sodium Chloride

Property	Sodium +	Chlorine	\longrightarrow	Sodium Chloride
Melting point	$97.8^{\circ} \mathrm{C}$	$-101^{\circ} \mathrm{C}$	$801^{\circ} \mathrm{C}$	
Boiling point	$881.4^{\circ} \mathrm{C}$	$-34^{\circ} \mathrm{C}$	$1413^{\circ} \mathrm{C}$	
Color	Silvery	Yellow-green	Colorless (white)	
Density	$0.97 \mathrm{~g} / \mathrm{cm}^{3}$	$0.0032 \mathrm{~g} / \mathrm{cm}^{3}$	$2.16 \mathrm{~g} / \mathrm{cm}^{3}$	
Behavior in water	Reacts	Dissolves slightly	Dissolves freely	

Sample Problem 2.1

Distinguishing Elements, Compounds, and Mixtures at the Atomic Scale

PROBLEM: The following scenes represent an atomic-scale view of three samples of matter. Describe each sample as an element, compound, or mixture.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLAN: A sample that contains only one type of particle is either an element or a compound. The particles of an element consist of only one type of atom whereas the particles of a compound have two or more types of atom bonded together.

Sample Problem 2.1

SOLUTION:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sample (a) contains three different types of particles and is therefore a mixture.

Sample (b) contains only one type of particle and each particle has only one atom. This is an element.

Sample (c) contains only one type of particle, each of which contains two different types of atoms. This is a compound.

Observations that lead to an atomic view of matter

1- Law of mass conservation.
2- Law of definite (constant) composition.
3- Law of multiple proportion.

Law of Mass Conservation

The total mass of substances present does not change during a chemical reaction.(Matter cannot be created or destroyed).

calcium oxide + carbon dioxide calcium carbonate

CaO	$+\mathrm{CO}_{2}$	\longrightarrow	CaCO_{3}
56.08 g	+44.00 g	\longrightarrow	100.08 g

Law of Definite (or Constant) Composition

No matter the source, a particular compound is composed of the same elements in the same parts (fractions) by mass.(mass fraction).

Calcium carbonate

Analysis by Mass
(grams/20.0 g)
8.0 g calcium
2.4 g carbon
9.6 g oxygen
20.0 g

Mass Fraction
(parts/1.00 part)
0.40 calcium
0.12 carbon
0.48 oxygen
1.00 part by mass

Percent by Mass (parts/100 parts)

40\% calcium
12\% carbon
48\% oxygen
100% by mass

Calculating the Mass of an Element in a Compound

PROBLEM: Analysis of 84.2 g of the uranium containing compound pitchblende shows it is composed of 71.4 g of uranium, with oxygen as the only other element. How many grams of uranium can be obtained from 102 kg of pitchblende?

PLAN: The mass ratio of uranium/pitchblende is the same no matter the source. We can use the ratio to find the answer.

mass (kg) of pitchblende

mass ratio of U in pitchblende

mass (kg) of uranium
$1 \mathrm{~kg}=1000 \mathrm{~g}$
mass (g) of uranium

Sample Problem 2.2

SOLUTION:

mass (kg) of uranium =
mass (kg) pitchblende x mass (kg) uranium in pitchblende mass (kg) pitchblende
$=102 \mathrm{~kg}$ pitchblende $\times \frac{71.4 \mathrm{~kg} \text { uranium }}{84.2 \mathrm{~kg} \text { pitchblende }}=86.5 \mathrm{~kg}$ uranium
86.5 kg uranium $\times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=8.65 \times 10^{4} \mathrm{~g}$ uranium

Law of Multiple Proportions

If elements A and B react to form two compounds, the different masses of B that combine with a fixed mass of A can be expressed as a ratio of small whole numbers.

Example: Carbon Oxides A \& B

Carbon Oxide I : 57.1\% oxygen and 42.9\% carbon

Carbon oxide I (carbon monoxide)

Assume that you have 100 g of each compound.

In 100 g of each compound:
$\mathrm{g} \mathrm{O}=57.1 \mathrm{~g}$ for oxide I \& 72.7 g for oxide II
g C $=42.9 \mathrm{~g}$ for oxide I \& 27.3 g for oxide II
For oxide I: $\quad \frac{\mathrm{g} \mathrm{O}}{\mathrm{g} \mathrm{C}}=\frac{57.1}{42.9}=1.33$

For oxide II: $\quad \frac{\mathrm{g} \mathrm{O}}{\mathrm{g} \mathrm{C}}=\frac{72.7}{27.3}=2.66$

$$
\frac{2.66 \mathrm{~g} \mathrm{O} / \mathrm{g} \mathrm{C} \mathrm{in} \mathrm{II}}{1.33 \mathrm{~g} \mathrm{O} / \mathrm{g} \mathrm{C} \mathrm{in} \mathrm{I}}=\frac{2}{1}
$$

In two compounds of same the elements, the mass fraction of one element relative to the other element changes in increments based on ratios of small whole number

Dalton's Atomic Theory

Dalton postulated that:

1. All matter consists of atoms; tiny indivisible particles of an element that cannot be created or destroyed.
2. Atoms of one element cannot be converted into atoms of another element.
3. Atoms of an element are identical in mass and other properties and are different from the atoms of any other element.
4. Compounds result from the chemical combination of a specific ratio of atoms of different elements.

Dalton's Atomic Theory

explains the mass laws

Mass conservation

Atoms cannot be created or destroyed postulate 1 or converted into other types of atoms. postulate 2

Since every atom has a fixed mass, postulate 3 during a chemical reaction the same atoms are present but in different combinations; therefore there is no mass change overall.

Dalton's Atomic Theory

explains the mass laws

Definite composition

Atoms are combined in compounds in postulate 4 specific ratios
and each atom has a specific mass.
postulate 3

Each element constitutes a fixed fraction of the total mass in a compound.

Dalton's Atomic Theory

explains the mass laws

Multiple proportions

Atoms of an element have the same mass postulate 3 and atoms are indivisible. postulate 1

When different numbers of atoms of elements combine, they must do so in ratios of small, whole numbers.

Sample Problem $2.3 \quad$ Visualizing the Mass Laws

PROBLEM: The following scene represents an atomic-scale view of a chemical reaction. Which of the mass laws (mass conservation, definite composition, or multiple proportions) is (are) illustrated?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

PLAN:
Note the numbers, types and combination of atoms before and after the reaction.

Sample Problem 2.3

SOLUTION:

There are 7 purple and 9 green atoms both before and after the reaction. Mass is therefore conserved.

After the reaction some purple atoms remain unreacted, but some have combined with green atoms to form a compound. Each particle of this compound contains 1 purple and 2 green atoms - the composition is constant, illustrating the law of definite composition.

Only one compound forms, law of multiple proportions does not pertain.

Observations that established the properties of cathode rays.

Observation	Conclusion
Ray bends in magnetic field.	Ray consists of charged particles.
Ray bends toward positive plate	Ray consists of negative particles.
in electric field.	
Ray is identical for any cathode.	These particles are found in ALL matter.

Figure 2.4

Millikan's oil-drop experiment for measuring an electron's charge. (1909)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electron charge $=-1.60218 \times 10^{-19} \mathrm{C} \quad$ (coulomb)

Milikan's findings were used to calculate the mass of an electron.
determined by J.J. Thomson and others
mass of electron $=\frac{\text { mass }}{\text { charge }} \times$ charge

2-26

UPLOADED BY AHPCtthefford's α-scattering experiment and discovery Figure 2.5 of the atomic nucleus. (1910)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

A Hypothesis: Expected result based on "plum pudding" indel

B Experiment
C Actual result

Rutherford: Atoms are empty space occupied by electrons, but in the center a tiny region he called nucleus contains all the positive particles and called them protens.

In 1932 James Chadwick discovered the Neutrons.

The atom is an electrically neutral, spherical entity composed of a positively charged central nucleus surrounded by one or more negatively charged electrons.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The atomic nucleus consists of protons and neutrons.

Table 2.2 Properties of the Three Key Subatomic Properties

	Charge		Mass		
Name (Symbol)	Relative Absolute (C)	Relative $(\mathrm{amu})^{\dagger}$	Absolute (g)	Location in Atom	
Proton $\left(\mathrm{p}^{+}\right)$	$1+$	$+1.60218 \times 10^{-19}$	1.00727	1.67262×10^{-24}	Nucleus
Neutron $\left(\mathrm{n}^{0}\right)$	0	0	1.00866	1.67493×10^{-24}	Nucleus
Electron $\left(\mathrm{e}^{-}\right)$	$1-$	-1.60218×10^{-19}	0.00054858	9.10939×10^{-28}	Outside nucleus

*The coulomb (C) is the SI unit of charge.
\dagger The atomic mass unit (amu) equals $1.66054 \times 10^{-24} \mathrm{~g}$.

Atomic Number, Mass Number, and Atomic Symbol

Figure 2.7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$\mathrm{X}=$ Atomic symbol of the element
$\boldsymbol{A}=$ mass number; $A=Z+N$
$Z=$ atomic number (the number of protons in the nucleus)
$\boldsymbol{N}=$ number of neutrons in the nucleus
35
${ }_{17} \mathrm{Cl} \quad \mathrm{N}=$?

Isotopes

Isotopes are atoms of an element with the same number of protons, but a different number of neutrons.

Isotopes have the same atomic number, but a different mass number.

Figure 2.7

PROBLEM: Silicon (Si) has three naturally occurring isotopes: ${ }^{28} \mathrm{Si},{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$. Determine the number of protons, neutrons, and electrons in each silicon isotope.

PLAN: The mass number (A) is given for each isotope and is equal to the number of protons + neutrons. The atomic number Z, found on the periodic table, equals the number of protons. The number of neutrons $=A-Z$, and the number of electrons equals the number of protons for a neutral atom.

SOLUTION: The atomic number of silicon is 14 ; therefore

$$
\begin{aligned}
& { }^{28} \text { Si has } 14 \mathrm{p}^{+}, 14 \mathrm{e}^{-} \text {and } 14 \mathrm{n}^{0}(28-14) \\
& { }^{29} \mathrm{Si} \text { has } 14 \mathrm{p}^{+}, 14 \mathrm{e}^{-} \text {and } 15 \mathrm{n}^{0}(29-14) \\
& { }^{30} \mathrm{Si} \text { has } 14 \mathrm{p}^{+}, 14 \mathrm{e}^{-} \text {and } 16 \mathrm{n}^{0}(30-14)
\end{aligned}
$$

The Mass Spectrometer and Its Data

Mass Spectrometer measures the mass ratio and mass to charge ratio

Atomic Symbol

C Carbon
$\mathbf{N a}$ (Natrium) Sodium
Note: The chemical properties of an element are determined by the number of electrons or number of protons. So having Isotopes of an element will not change its chemical properties much.

Mass of an atom

Atomic mass unit (amu) or Dalton (Da)
Today (u) only

$$
\mathrm{amu}=\frac{1}{12} \text { mass of }{ }^{12} \mathrm{C}
$$

So ${ }^{12} \mathrm{C}$ has a mass of $\mathbf{1 2} \mathbf{u}$

PROBLEM: Silver ($\mathrm{Ag}, \mathrm{Z}=47$) has two naturally occurring isotopes, ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$. From the mass spectrometric data provided, calculate the atomic mass of Ag.

Isotope
${ }^{107} \mathrm{Ag}$
${ }^{109} \mathrm{Ag}$

Mass (amu)
106.90509
108.90476

Abundance (\%)
51.84
48.16

PLAN: Find the weighted average of the isotopic masses.
mass (g) of each isotope
multiply by fractional abundance of each isotope portion of atomic mass from each isotope
add isotopic portions
atomic mass

Sample Problem 2.5

SOLUTION:

mass portion from ${ }^{107} \mathrm{Ag}=$ $106.90509 \mathrm{amu} \times 0.5184=55.42 \mathrm{amu}$
mass portion from ${ }^{109} \mathrm{Ag}=$ $108.90476 \mathrm{amu} \times 0.4816=52.45 \mathrm{amu}$
atomic mass of $\mathrm{Ag}=55.42 \mathrm{amu}+52.45 \mathrm{amu}$

$$
=107.87 \mathrm{amu}
$$

The atomic mass is average value No individual atom has a mass of 107.87 amu

UPLOADED BY AHMAD T JUNDI

ELEMENTS: A FIRST LOOK AT THE PERIODIC TABLE.

187065 elements were known
Today more than 116 elements
Dmitri Mendeleev and Meyer discovered the periodic table separately in 1869
Dmitri Mendeleev organized elements, he listed the elements by increasing atomic mass.

Figure 2.9 The modern periodic table.

INNER TRANSITION ELEMENTS

6	Lanthanides	$\begin{gathered} 58 \\ \text { Ce } \\ 140.1 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.9 \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{P m} \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \end{gathered}$	64 Gd 157.3	$\begin{gathered} 65 \\ \text { Tb } \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.9 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.9 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \end{gathered}$	$\begin{gathered} 71 \\ \text { Lu } \\ 175.0 \end{gathered}$
7	Actinides	$\begin{gathered} 90 \\ \text { Th } \\ 232.0 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ (231) \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{~Np} \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (242) \end{gathered}$	95 Am (243)	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (252) \end{gathered}$	100 Fm (257)	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathrm{Lr} \\ (260) \end{gathered}$

- 7 Periods-(horizontal rows)
- 8 groups(A and B)- (vertical columns)
-Metal (blue) about three quarters of elements are metal , generally they are shiny solid at room temperature (mercury is liquid)
-Nonmetals (yellow) generally gases, brittle solid at room temperature (bromine is only liquid).
- Metalloids-semimetals(green)
-Elements in a group have similar chemical properties and elements in a period have different chemical properties.
- There is gradation in properties from left to right and top to bottom.
uploaded by ammandrouduction to bonding

UPLOADED BY AHMAD T JUNDI
Figure 2.11 Factors that influence the strength of ionic bonding.

$2-40$

Predicting the Ion an Element Forms

PROBLEM: Predict the monoatomic ion formed by each of the following elements:
$\begin{array}{lll}\text { (a) Iodine }(Z=53) & \text { (b) Calcium }(Z=20) & \text { (c) Aluminum (} Z=13)\end{array}$
PLAN: Use Z to find the element on the periodic table and see where it lies relative to its nearest noble gas.

SOLUTION:

(a) lodine is a nonmetal in Group 7A(17). It gains one electron to have the same number of electrons $\mathrm{as}_{54} \mathrm{Xe}$.

The ion is I^{-}
(b) Calcium is a metal in Group 2A(2). It loses two electrons to have the same number of electrons as ${ }_{18} \mathrm{Ar}$.

The ion is $\mathbf{C a}^{2+}$
(c) Aluminum is a metal in Group 3A(13). It loses three electrons to have the same number of electrons as ${ }_{10} \mathrm{Ne}$. The ion is Al^{3+}

Formation of a covalent bond between two H atoms.

Figure 2.12

Covalent bonds form when elements share electrons, which usually occurs between nonmetals.

Atoms far apart: No interactions.

Optimum distance: H_{2} molecule forms because attractions (green arrows) balance repulsions (red arrows).

Atoms closer: Attractions (green arrows) between nucleus of one atom and electron of the other increase. Repulsions between nuclei and between electrons are very weak.

Covalent V.S ionic substance

-Most covalent substances consist of molecules.
Covalent bonding involves the mutual attraction between two positively charged (nuclei) and two negatively charges (electrons).
-lonic bonding involves he mutual attraction among positive and negative ions.
Molecule - the basic unit of an element or covalent compound, consisting of two or more atoms bonded by the sharing of electrons. $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Ion - a single atom or covalently bonded group of atoms that has an overall electrical charge.
There are no molecules in an ionic compound.
2-43

Figure 2.13 Elements that occur as molecules.

Figure 2.14 The carbonate ion in calcium carbonate.

A polyatomic ion consists of two or more atoms covalently bonded together and has an overall charge.
In many reactions the polyatomic ion will remain together as a unit.

Chemical Formulas

- A chemical formula consists of
- element symbols with
- numerical subscripts.
- The chemical formula indicates the
- type and number of each atom present
- in the smallest unit of a substance.

Naming Binary Ionic Compounds

For all ionic compounds, the name and formula lists the cation first and the anion second.

In a binary ionic compound, both the cation and the anion are monatomic.

The name of the cation is the same as the name of the metal. Many metal names end in -ium.

The anion is named by adding the suffix -ide to the root of the nonmetal name.

Calcium and bromine form calcium bromide.

Table 2.3 COMmON Monatomic lons*

Charge	Cations Formula	Name	Charge	Anions Formula	Name
+1	$\begin{aligned} & \hline \mathrm{H}^{+} \\ & \mathrm{Li}^{+} \\ & \mathbf{N a}^{+} \\ & \mathbf{K}^{+} \\ & \mathrm{Cs}^{+} \\ & \mathbf{A g}^{+} \end{aligned}$	hydrogen lithium sodium potassium cesium silver	-1	$\begin{aligned} & \mathrm{H}- \\ & \mathrm{F}^{-} \\ & \mathrm{Cl}^{-} \\ & \mathrm{Br}^{-} \\ & \mathrm{I}^{-} \end{aligned}$	hydride fluoride chloride bromide iodide
+2	$\mathbf{M g}^{2+}$ Ca^{2+} Sr^{2+} Ba^{2+} $\mathrm{Zn}^{\mathbf{2 +}}$ Cd^{2+}	magnesium calcium strontium barium zinc cadmium	-2	$\begin{aligned} & \mathbf{O}^{2-} \\ & \mathbf{S}^{2-} \end{aligned}$	oxide sulfide
+3	Al^{3+}	aluminum	-3	N^{3-}	nitride

*Listed by charge; those in boldface are most common.

Figure 2.15 Some common monatomic ions of the elements.

Most main-group elements form one monatomic ion. Most transition elements form two monatomic ions.

PROBLEM: Name the ionic compound formed from each of the following pairs of elements:
(a) magnesium and nitrogen
(c) strontium and fluorine
(b) iodine and cadmium
(d) sulfur and cesium

PLAN: Use the periodic table to decide which element is the metal and which the nonmetal. The metal (cation) is named first and the suffix-ide is added to the root of the non-metal name.

SOLUTION:
(a) magnesium nitride
(b) cadmium iodide
(c) strontium fluoride
(d) cesium sulfide

Sample Problem 2.8

Determining Formulas of Binary Ionic Compounds

PROBLEM: Write empirical formulas for each of the compounds named in Sample Problem 2.7.
(a) magnesium nitride
(b) cadmium iodide
(c) strontium fluoride
(d) cesium sulfide

PLAN: A compound is neutral. We find the smallest number of each ion that will produce a neutral formula. These numbers appear as right subscripts to the relevant element symbol.

SOLUTION:

(a) Mg^{2+} and N^{3-}; three $\mathrm{Mg}^{2+}(6+)$ and two $\mathrm{N}^{3-}\left(6^{-}\right) ; \mathbf{M g}_{3} \mathbf{N}_{2}$
(b) Cd^{2+} and I^{-}; one $\mathrm{Cd}^{2+}(2+)$ and two $\mathrm{I}^{-}\left(2^{-}\right)$; CdI_{2}
(c) Sr^{2+} and F^{-}; one $\mathrm{Sr}^{2+}\left(2^{+}\right)$and two $\mathrm{F}^{-}\left(2^{-}\right) ; \mathrm{SrF}_{2}$
(d) Cs^{+}and S^{2-}; two $\mathrm{Cs}^{+}(2+)$ and one $\mathrm{S}^{2-}\left(2^{-}\right) ; \mathrm{Cs}_{\mathbf{2}} \mathrm{S}$

Table 2.4 Some Metals That Form More Than One Monatomic Ion*

Element	Ion Formula	Systematic Name	Common Name
Chromium	Cr^{2+}	chromium(II)	chromous
	Cr^{3+}	chromium(III)	chromic
Cobalt	Co^{2+}	cobalt(II)	
	Co^{3+}	cobalt(III)	
Copper	Cu^{+}	copper(I)	cuprous
	Cu^{2+}	copper(II)	cupric
	Fe^{2+}	iron(II)	ferrous
	Fe^{3+}	iron(III)	ferric
	Pb^{2+}	lead(II)	
Mercury	Pb^{4+}	$\mathrm{Hg}_{2}{ }^{2+}$	lead(IV)
	Hg^{2+}	mercury (I)	mercurous
Tin	Sn^{2+}	mercury (II)	mercuric
	Sn^{4+}	tin(II)	tin(IV)

[^0]
Determining Names and Formulas of Ionic Compounds of Elements That Form More Than One Ion

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:
(a) tin(II) fluoride
(b) Crl_{3}
(c) ferric oxide
(d) CoS

PLAN: Find the smallest number of each ion that will produce a neutral formula.

SOLUTION:
(a) $\mathrm{Tin}(\mathrm{II})$ is Sn^{2+}; fluoride is F^{-}; so the formula is SnF_{2}.
(b) The anion I^{-}is iodide; $3 \mathrm{I}^{-}$means that Cr (chromium) is $+3 . \mathrm{CrI}_{3}$ is chromium(III) iodide.
(c) Ferric is a common name for Fe^{3+}; oxide is O^{2-}; therefore the formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
(d) Co is cobalt; the anion S^{2-} is sulfide; the compound is cobalt(II) sulfide.

Table 2.5 Common Polyatomic lons*

Formula	Name	Formula	Name
		Cations	
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium
		Common Anions	

[^1]Figure 2.16 Naming oxoanions

$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{0} \end{aligned}$	Prefix	Root	Suffix	Example	
	per	root	ate	$\mathrm{ClO}_{4}{ }^{-}$	perchlorate
		root	ate	$\mathrm{ClO}_{3}{ }^{-}$	chlorate
		root	ite	$\mathrm{ClO}_{2}{ }^{-}$	chlorite
	hypo	root	ite	ClO^{-}	hypochlorite

Table 2.6 Numerical Prefixes* for Hydrates and Binary Covalent Compounds

Number	Prefix	Number	Prefix	Number	Prefix
1	mono-	4	tetra-	8	octa-
2	di-	5	penta-	9	nona-
3	tri-	6	hexa-	10	deca-
		7	hepta-		

Sample Problem 2.10

Determining Names and Formulas of Ionic Compounds Containing Polyatomic Ions

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:
(a) $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$
(b) sodium sulfite
(c) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

PLAN: Remember to use parentheses when more than one unit of a particular polyatomic ion is present in the compound.

SOLUTION: (a) ClO_{4}^{-}is perchlorate; Fe must have a $2+$ charge since there are $2 \mathrm{ClO}_{4}^{-}$ions. This is iron(II) perchlorate.
(b) The anion sulfite is $\mathrm{SO}_{3}{ }^{2-}$; therefore you need $2 \mathrm{Na}^{+}$for each sulfite. The formula is $\mathrm{Na}_{2} \mathbf{S O}_{3}$.
(c) The ionic compound is barium hydroxide. When water is included in the formula, we use the term "hydrate" and a prefix that indicates the number of molecules of $\mathrm{H}_{2} \mathrm{O}$. This compound is barium hydroxide octahydrate.

Sample Problem 2.11

Recognizing Incorrect Names and Formulas of Ionic Compounds

PROBLEM: There is an error in the second part of each statement. Provide the correct name or formula in each case.
(a) $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ is called barium diacetate.
(b) Sodium sulfide has the formula $(\mathrm{Na})_{2} \mathrm{SO}_{3}$.
(c) Iron(II) sulfate has the formula $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
(d) Cesium carbonate has the formula $\mathrm{Cs}_{2}\left(\mathrm{CO}_{3}\right)$.

SOLUTION:

(a) The charge of Ba^{2+} must be balanced by two $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ions. The prefix "di" is not required and is not used in this way when naming ionic compounds. The correct name is simply barium acetate.
(b) An ion of a single element does not need parentheses, and sulfide is S^{2-}, not $\mathrm{SO}_{3}{ }^{2-}$. The correct formula is $\mathrm{Na}_{2} \mathbf{S}$.
(c) Sulfate or $\mathrm{SO}_{4}{ }^{2-}$ has a 2^{-}charge, and only one Fe^{2+} is needed to form a neutral compound. The formula should be FeSO_{4}.
(d) The parentheses are unnecessary, since only one $\mathrm{CO}_{3}{ }^{2-}$ ion is present. The correct formula is $\mathrm{Cs}_{2} \mathbf{C O}_{3}$.

Naming Acids

1) Binary acid solutions form when certain gaseous compounds dissolve in water.
For example, when gaseous hydrogen chloride (HCI) dissolves in water, it forms a solution called hydrochloric acid.
Prefix hydro-+ anion nonmetal root + suffix -ic + the word acid hydro + chlor + ic + acid
hydrochloric acid
2) Oxoacid names are similar to those of the oxoanions, except for two suffix changes:
-ate in the anion becomes -ic in the acid
-ite in the anion becomes -ous in the acid
The oxoanion prefixes hypo- and per-are retained. Thus, BrO_{4}^{-}is perbromate, and HBrO_{4} is perbromic acid;
IO_{2}^{-}is iodite, and HIO_{2} is iodous acid.

Sample Problem 2.12

Determining Names and Formulas of Anions and Acids

PROBLEM: Name the following anions and give the name and formula of the acid derived from each:
(a) Br^{-}
(b) $\mathrm{IO}_{3}{ }^{-}$
(c) CN^{-}
(d) $\mathrm{SO}_{4}{ }^{2-}$
(e) $\mathrm{NO}_{2}{ }^{-}$

SOLUTION:

(a) The anion is bromide; the acid is hydrobromic acid, HBr .
(b) The anion is iodate; the acid is iodic acid, HIO_{3}.
(c) The anion is cyanide; the acid is hydrocyanic acid, HCN .
(d) The anion is sulfate; the acid is sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(e) The anion is nitrite; the acid is nitrous acid, HNO_{2}.

Naming Binary Covalent Compounds

A binary covalent compound is typically formed by the combination of two non-metals.

Some of these compounds are very common and have trivial names, eg., $\mathrm{H}_{2} \mathrm{O}$ is water.

For a binary covalent compound, the element with the lowergroup number in the periodic table is first in the name and formula. Its name remains unchanged.

The element that is second is named using the root with the suffix -ide. Numerical prefixes indicate the number of atoms of each element present.

PROBLEM: (a) What is the formula of carbon disulfide?
(b) What is the name of PCl_{5} ?
(c) Give the name and formula of the compound whose molecules each consist of two N atoms and four O atoms.

SOLUTION:

(a) Carbon is C , sulfide is sulfur S and di-means two; the formula is CS_{2}.
(b) P is phosphorous, Cl is chloride, the prefix for 5 is penta-. This is phosphorous pentachloride.
(c) N is nitrogen and is in a lower group number than O (oxygen). The compound formula is $\mathbf{N}_{2} \mathbf{O}_{4}$ and the name is dinitrogen tetraoxide.

PROBLEM: Explain what is wrong with the name of formula in the second part of each statement and correct it:
(a) SF_{4} is monosulfur pentafluoride.
(b) Dichlorine heptaoxide is $\mathrm{Cl}_{2} \mathrm{O}_{6}$.
(c) $\mathrm{N}_{2} \mathrm{O}_{3}$ is dinitrotrioxide.

SOLUTION:

(a) The prefix mono- is not needed if there is only one atom of the first element, and the prefix for four is tetra-. So the name is sulfur tetrafluoride.
(b) Hepta- means 7; the formula should be $\mathrm{Cl}_{2} \mathrm{O}_{7}$.
(c) The first element is given its elemental name so this is dinitrogen trioxide.

Naming Straight-Chain Alkanes

Hydrocarbons are compounds that contain only carbon and hydrogen atoms.

Alkanes are the simplest type of hydrocarbon.
Alkanes are named using a root name followed by the suffix -ane.

Table 2.7 The First 10 Straight-Chain Alkanes

Name $($ Formula)
Methane $\left(\mathrm{CH}_{4}\right)$
Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$
Pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$
Hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$
Heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$
Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$
Nonane $\left(\mathrm{C}_{9} \mathrm{H}_{20}\right)$
Decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$

Molecular Masses from Chemical Formulas

Molecular mass = sum of atomic masses

For the $\mathrm{H}_{2} \mathrm{O}$ molecule:
molecular mass =
(2 x atomic mass of H) $+(1 \mathrm{x}$ atomic mass of O$)$
$=(2 \times 1.008 \mathrm{amu})+(1 \times 16.00 \mathrm{amu})$
$=18.02 \mathrm{amu}$
By convention, we read masses off the periodic table to 4 significant figures.

For ionic compounds we refer to a formula mass since ionic compounds do not consist of molecules.

Calculating the Molecular Mass of a Compound

PROBLEM: Using the periodic table, calculate the molecular (or formula) mass of:
(a) tetraphosphorous trisulfide
(b) ammonium nitrate

PLAN: Write the formula and then multiply the number of atoms by the respective atomic masses. Add the masses for each compound.

SOLUTION:

(a) $\mathrm{P}_{4} \mathrm{~S}_{3}$
molecular mass $=(4 x$ atomic mass of $P)+(3 x$ atomic mass of $S)$

$$
=(4 \times 30.97 \mathrm{amu})+(3 \times 32.07 \mathrm{amu})=220.09 \mathrm{amu}
$$

(b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
formula mass $=(2 x$ atomic mass of $N)+(4 x$ atomic mass of $H)+$ ($3 x$ atomic mass of O)
$=(2 \times 14.01 \mathrm{amu})+(4 \times 1.008 \mathrm{amu})+(3 \times 16.00 \mathrm{amu})$
$=80.05 \mathrm{amu}$
2-68

PROBLEM: Each scene represents a binary compound. Determine its formula, name, and molecular (formula) mass.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLAN: Each compound contains only two elements. Find the simplest whole number ratio of atoms in each compound and use this formula to determine the name and the formula mass.

Sample Problem 2.16

SOLUTION:

(a) There is 1 brown Na^{+}for every green F^{-}, so the formula is NaF , an ionic compound, which is named sodium fluoride.

Formula mass $=(1 \times$ atomic mass of Na$)+(1 \mathrm{x}$ atomic mass of F$)$

$$
=22.99 \mathrm{amu}+10.00 \mathrm{amu}=41.99 \mathrm{amu}
$$

(b) There are 3 green F for every blue N, so the formula is $\mathbf{N F}_{3}$, a covalent compound, which is named nitrogen trifluoride.

Molecular mass $=(1 x$ atomic mass of $N)+(3 x$ atomic mass of $F)$ $=14.01 \mathrm{amu}+(3 \times 19.00)=71.01 \mathrm{amu}$

Representing Molecules with Formulas and Models

$\mathrm{H}_{2} \mathrm{O} \quad$ Molecular formula for water.
$\mathrm{H}: \mathrm{O}: \mathrm{H}$
Structural formulas for water. $\mathrm{H}-\mathrm{O}-\mathrm{H}$

Ball-and-stick model for water.

Space-filling model for water.

UPLOADED BY AHMAD T JUNDI

Representing Molecules with Formulas and Models

Chapter 3

Stoichiometry of Formulas and Equations

Mole - Mass Relationships in Chemical Systems

3.1 The Mole
3.2 Determining the Formula of an Unknown Compound
3.3 Writing and Balancing Chemical Equations
3.4 Calculating Quantities of Reactant and Product
3.5 Fundamentals of Solution Stoichiometry

The Mole

The mole (mol) is the amount of a substance that contains the same number of entities as there are atoms in exactly 12 g of carbon-12.

The term "entities" refers to atoms, ions, molecules, formula units, or electrons - in fact, any type of particle.

One mole ($1 \mathbf{~ m o l}$) contains 6.022×10^{23} entities (to four significant figures).

This number is called Avogadro's number and is abbreviated as \boldsymbol{N}.

UPLOADED BY AHMAD T JUNDI
Figure 3.1 One mole (6.022×10^{23} entities) of some familiar substances.

Copyright (0) The McGran-Hill Companies, Inc. Permission required for reproduction or display.

Determining Molar Mass

The molar mass (\mathcal{M}) of a substance is the mass per mole of its entities (atoms, molecules or formula units).

For monatomic elements, the molar mass is the same as the atomic mass in grams per mole. The atomic mass is simply read from the Periodic Table.

The molar mass of $\mathrm{Ne}=20.18 \mathrm{~g} / \mathrm{mol}$.

For molecular elements and for compounds, the formula is needed to determine the molar mass.

The molar mass of $\mathrm{O}_{2}=2 \times \mathscr{M}$ of O

$$
\begin{aligned}
& =2 \times 16.00 \\
& =32.00 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

The molar mass of $\mathrm{SO}_{2}=1 \times \mathcal{M}$ of $\mathrm{S}+2 \times \mathcal{M}$ of O

$$
\begin{aligned}
& =32.00+2(16.00) \\
& =64.00 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Table 3.1 Information Contained in the Chemical Formula of Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathbb{M}=180.16 \mathrm{~g} / \mathrm{mol})$

Carbon (C)

Atoms/molecule of compound	6 atoms	12 atoms	6 atoms
Moles of atoms $/ \mathrm{mole}$ of compound	6 mol of atoms	12 mol of atoms	6 mol of atoms
Atoms $/$ mole of compound	$6\left(6.022 \times 10^{23}\right)$ atoms	$12\left(6.022 \times 10^{23}\right)$ atoms	$6\left(6.022 \times 10^{23}\right)$ atoms
Mass $/$ molecule of compound	$6(12.01 \mathrm{amu})$	$12(1.008 \mathrm{amu})$	$6(16.00 \mathrm{amu})=$
Mass $/$ mole of	72.06 amu	$=12.10 \mathrm{amu}$	96.00 amu
72.06 g	12.10 g	96.00 g	

Hydrogen (H)
12 atoms 6 atoms

12 mol of atoms
$=12.10 \mathrm{amu}$
12.10 g

UPLOADED BY AHMAD T JUNDI

Converting Between Amount, Mass, and Number of Chemical Entities

Mass $(\mathrm{g})=$ no. of moles $\times \frac{\text { no. of grams }}{1 \mathrm{~mol}} \longleftarrow \boldsymbol{g}$

No. of moles $=$ mass $(\mathrm{g}) \mathrm{x}$

No. of entities $=$ no. of moles x
$\frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}}$
No. of moles $=$ no. of entities $\times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { entities }}$

UPLOADED BY AHMAD T JUNDI
Figure 3.2 Mass-mole-number relationships for elements.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calculating the Mass of a Given Amount of an Element

PROBLEM: Silver (Ag) is used in jewelry and tableware but no longer in U.S. coins. How many grams of Ag are in 0.0342 mol of Ag ?

PLAN: To convert mol of Ag to mass of Ag in g we need the molar mass of Ag.
amount (mol) of Ag
multiply by \mathcal{M} of $\mathrm{Ag}(107.9 \mathrm{~g} / \mathrm{mol})$

$$
\text { mass }(\mathrm{g}) \text { of } \mathrm{Ag}
$$

SOLUTION:

$$
0.0342 \text { molAg } x \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} / \mathrm{Ag}} \quad=3.69 \mathrm{~g} \mathrm{Ag}
$$

PROBLEM: Gallium (Ga) is a key element in solar panels, calculators, and other light-sensitive electronic devices. How many Ga atoms are in $2.85 \times 10^{-3} \mathrm{~mol}$ of gallium?

PLAN: To convert mol of Ga to number of Ga atoms we need to use Avogadro's number.

mol of $\mathbf{G a}$

multiply by 6.022×10^{23} atoms $/ \mathrm{mol}$
atoms of $\mathbf{G a}$

3-12

UPLOADED BY AHMAD T JUNDI

Sample Problem 3.2

SOLUTION:

2.85×10^{-3} mol-Garatoms $\times \frac{6.022 \times 10^{23} \mathrm{Ga} \text { atoms }}{1 \mathrm{molGa} \text { Gtoms }}$

$$
=1.72 \times 10^{21} \mathrm{Ga} \text { atoms }
$$

PROBLEM: Iron (Fe) is the main component of steel and is therefore the most important metal in society; it is also essential in the body. How many Fe atoms are in 95.8 g of Fe ?

PLAN: The number of atoms cannot be calculated directly from the mass. We must first determine the number of moles of Fe atoms in the sample and then use Avogadro's number.

UPLOADED BY AHMAD T JUNDI

Sample Problem 3.3

SOLUTION:

$$
95.8 \mathrm{gFex} \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85-\mathrm{g} \mathrm{Fe}}=1.72 \mathrm{~mol} \mathrm{Fe}
$$

1.72 molFe $\times \frac{6.022 \times 10^{23} \mathrm{atoms} \mathrm{Fe}}{1 \mathrm{molFe}}$

$$
=1.04 \times 10^{24} \text { atoms } \mathrm{Fe}
$$

Figure 3.3 Amount-mass-number relationships for compounds.
 a Given Mass of a Compound I

PROBLEM: Nitrogen dioxide is a component of urban smog that forms from the gases in car exhausts. How many molecules are in 8.92 g of nitrogen dioxide?

PLAN: Write the formula for the compound and calculate its molar mass. Use the given mass to calculate first the number of moles and then the number of molecules.

mass (g) of NO_{2}

divide by \mathcal{M}
amount (mol) of NO_{2}
multiply by 6.022×10^{23} formula units $/ \mathrm{mol}$

$$
\text { number of } \mathrm{NO}_{2} \text { molecules }
$$

Sample Problem 3.4

SOLUTION: NO_{2} is the formula for nitrogen dioxide.

$$
\begin{aligned}
& \mathscr{M}=(1 \times \mathscr{M} \text { of N})+(2 \times \mathscr{M} \text { of O) } \\
&=14.01 \mathrm{~g} / \mathrm{mol}+2(16.00 \mathrm{~g} / \mathrm{mol}) \\
&=46.01 \mathrm{~g} / \mathrm{mol} \\
& 8.92 \mathrm{gNO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{46.01 \mathrm{~g} \mathrm{NO}_{2}}=0.194 \mathrm{~mol} \mathrm{NO}_{2} \\
& 0.194 \mathrm{~mol} \mathrm{NO}_{2} \times \frac{6.022 \times 10^{23} \mathrm{molecules}^{\mathrm{NO}_{2}}}{1 \mathrm{~mol} \mathrm{NO}_{2}}
\end{aligned}
$$

$$
=1.17 \times 10^{23} \text { molecules } \mathrm{NO}_{2}
$$ a Given Mass of a Compound II

PROBLEM: Ammonium carbonate, a white solid that decomposes on warming, is a component of baking powder.
a) How many formula units are in 41.6 g of ammonium carbonate?
b) How many O atoms are in this sample?

PLAN:

Write the formula for the compound and calculate its molar mass. Use the given mass to calculate first the number of moles and then the number of formula units.

The number of O atoms can be determined using the formula and the number of formula units.

Sample Problem 3.5

mass (g) of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

divide by \mathcal{M}

amount (mol) of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

number of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ formula units
3 O atoms per formula unit of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

number of \mathbf{O} atoms

SOLUTION: $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is the formula for ammonium carbonate.

$$
\begin{aligned}
\mathscr{M}= & (2 \times M \text { of } N)+(8 \times \mathscr{M} \text { of } \mathrm{H})+(1 \times \mathscr{M} \text { of } \mathrm{C})+(3 \times \mathscr{M} \text { of } \mathrm{O}) \\
= & (2 \times 14.01 \mathrm{~g} / \mathrm{mol})+(8 \times 1.008 \mathrm{~g} / \mathrm{mol}) \\
& +(12.01 \mathrm{~g} / \mathrm{mol})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol}) \\
& =96.09 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Sample Problem 3.5

$$
41.6 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=0.433 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

$0.433 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{6.022 \times 10^{23} \text { formula units }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}$

$$
=2.61 \times 10^{23} \text { formula units }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

2.61×10^{23} formula units $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{3 \mathrm{O} \text { atoms }}{1 \text { fermula unit of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}$
$=7.83 \times 10^{23} \mathrm{O}$ atoms

The Importance of Mass Percent

> Mass \% of element $\mathrm{X}=$
> atoms of X in formula x atomic mass of X (amu) $x 100$
> molecular (or formula) mass of compound (amu)

Mass \% of element $\mathrm{X}=$
$\frac{\text { moles of } X \text { in formula } \times \text { molar mass of } X(\mathrm{~g} / \mathrm{mol})}{\operatorname{mass}(\mathrm{g}) \text { of } 1 \mathrm{~mol} \text { of compound }} \times 100$

The individual mass percents added up to 100% (within rounding)

Calculating the Mass Percent of Each Element in a Compound from the Formula

PROBLEM: Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is a key nutrient for generating chemical potential energy in biological systems. What is the mass percent of each element in glucose?

PLAN: Find the molar mass of glucose, which is the mass of 1 mole of glucose. Find the mass of each element in 1 mole of glucose, using the molecular formula.

The mass \% for each element is calculated by dividing the mass of that element in 1 mole of glucose by the total mass of 1 mole of glucose, multiplied by 100 .

Sample Problem 3.6

PLAN:

$$
\text { amount (mol) of element } X \text { in } 1 \mathrm{~mol} \text { compound }
$$

multiply by \mathcal{M} ($\mathbf{g} / \mathrm{mol}$) of X
mass (g) of X in 1 mol of compound
divide by mass (g) of 1 mol of compound mass fraction of X
multiply by 100
mass \% X in compound

Sample Probiem 3.6

SOLUTION:

In 1 mole of glucose there are $\mathbf{6}$ moles of $\mathrm{C}, \mathbf{1 2}$ moles H , and $\mathbf{6}$ moles O .

$$
\begin{aligned}
& 6 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=72.06 \mathrm{~g} \mathrm{C} \quad 12 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=12.096 \mathrm{~g} \mathrm{H} \\
& 6 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=96.00 \mathrm{~g} \mathrm{O} \quad \mathcal{M}=180.16 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\text { mass percent of } \mathrm{C}=\frac{72.06 \mathrm{~g} \mathrm{C}}{180.16 \mathrm{~g} \text { glucose }}=0.3999 \times 100=39.99 \text { mass } \% \mathrm{C}
$$

$$
\text { mass percent of } \mathrm{H}=\frac{12.096 \mathrm{~g} \mathrm{H}}{180.16 \mathrm{~g} \text { glucose }}=0.06714 \times 100=6.714 \mathrm{mass} \% \mathrm{H}
$$

$$
\text { mass percent of } \mathrm{O}=\frac{96.00 \mathrm{~g} \mathrm{O}}{180.16 \mathrm{~g} \mathrm{glucose}}=0.5329 \times 100=53.29 \text { mass } \% \mathrm{O}
$$

Determining the Mass of an Element from Its Percent

Mass percent can also be used to calculate the mass of a particular element in any mass of a compound.

Mass of element X present in sample $=$ mass of compound $x \frac{\text { mass of element in } 1 \mathrm{~mol} \text { of compound }}{\text { mass of } 1 \mathrm{~mol} \text { of compound }}$

Calculating the Mass of an Element in a Compound

PROBLEM: Use the information from Sample Problem 3.6 to determine the mass (g) of carbon in 16.55 g of glucose.

PLAN: The mass percent of carbon in glucose gives us the relative mass of carbon in 1 mole of glucose. We can use this information to find the mass of carbon in any sample of glucose.
mass of glucose sample
multiply by mass percent of C in glucose
mass of C in sample

3-27

Sample Problem 3.7

SOLUTION:

Each mol of glucose contains 6 mol of C , or 72.06 g of C .

Mass (g) of $\mathrm{C}=$ mass (g) of glucose $\times \frac{6 \mathrm{~mol} \times \mathscr{M} \text { of } \mathrm{C}(\mathrm{g} / \mathrm{mol})}{\text { mass }(\mathrm{g}) \text { of } 1 \mathrm{~mol} \text { of glucose }}$

$$
=16.55 \mathrm{~g} \text { glucose } \mathrm{x} \frac{72.06 \mathrm{~g} \mathrm{C}}{180.16 \mathrm{~g} \text { glucose }}=6.620 \mathrm{~g} \mathrm{C}
$$

Empirical and Molecular Formulas

The empirical formula is the simplest formula for a compound that agrees with the elemental analysis. It shows the lowest whole number of moles and gives the relative number of atoms of each element present.
The empirical formula for hydrogen peroxide is HO .

The molecular formula shows the actual number of atoms of each element in a molecule of the compound.
The molecular formula for hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$.

Sample Problem 3.8

Determining an Empirical Formula from

 Amounts of ElementsPROBLEM: A sample of an unknown compound contains 0.21 mol of zinc, 0.14 mol of phosphorus, and 0.56 mol of oxygen. What is its empirical formula?

PLAN: Find the relative number of moles of each element. Divide by the lowest mol amount to find the relative mol ratios (empirical formula).
amount (mol) of each element
use \# of moles as subscripts

preliminary formula

change to integer subscripts
empirical formula

Sample Problem 3.8

SOLUTION: Using the numbers of moles of each element given, we write the preliminary formula $\mathrm{Zn}_{0.21} \mathrm{P}_{0.14} \mathrm{O}_{0.56}$

Next we divide each fraction by the smallest one; in this case 0.14 :

$$
\frac{0.21}{0.14}=1.5 \quad \frac{0.14}{0.14}=1.0 \quad \frac{0.56}{0.14}=4.0
$$

This gives $\mathrm{Zn}_{1.5} \mathrm{P}_{1.0} \mathrm{O}_{4.0}$
We convert to whole numbers by multiplying by the smallest integer that gives whole numbers; in this case 2:

$$
1.5 \times 2=\mathbf{3} \quad 1.0 \times 2=\mathbf{2} \quad 4.0 \times 2=8
$$

This gives us the empirical formula $\mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{O}_{8}$

Determining an Empirical Formula from Masses of Elements

PROBLEM: Analysis of a sample of an ionic compound yields 2.82 g of $\mathrm{Na}, 4.35 \mathrm{~g}$ of Cl , and 7.83 g of O . What is the empirical formula and the name of the compound?

PLAN: Find the relative number of moles of each element. Divide by the lowest mol amount to find the relative mol ratios (empirical formula).

mass (g) of each element

divide by \mathcal{M} ($\mathrm{g} / \mathrm{mol}$)
amount (mol) of each element
use \# of moles as subscripts
preliminary formula
change to integer subscripts
empirical formula

Sample Problem 3.9

SOLUTION: $2.82 \mathrm{~g} \mathrm{Nax} \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.123 \mathrm{~mol} \mathrm{Na}$

$$
\begin{aligned}
& 4.35 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{l}}=0.123 \mathrm{~mol} \mathrm{Cl} \\
& 7.83 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{go}}=0.489 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Na and $\mathrm{Cl}=\frac{0.123}{0.123}=1$ and $\mathrm{O}=\frac{0.489}{0.123}=3.98$

The empirical formula is $\mathrm{Na}_{1} \mathrm{Cl}_{1} \mathrm{O}_{3.98}$ or NaClO_{4}; this compound is named sodium perchlorate.

Molecular Formulas

The molecular formula gives the actual numbers of moles of each element present in 1 mol of compound.

The molecular formula is a whole-number multiple of the empirical formula.
$\frac{\text { molar mass }(\mathrm{g} / \mathrm{mol})}{\text { empirical formula mass }(\mathrm{g} / \mathrm{mol})}=$ whole-number multiple

Determining a Molecular Formula from Elemental Analysis and Molar Mass

PROBLEM: Elemental analysis of lactic acid ($\mathcal{M}=90.08 \mathrm{~g} / \mathrm{mol}$) shows it contains 40.0 mass $\% \mathrm{C}, 6.71$ mass $\% \mathrm{H}$, and 53.3 mass \% O. Determine the empirical formula and the molecular formula for lactic acid.

PLAN:

assume 100 g lactic acid; then mass \% = mass in grams divide each mass by \mathcal{M}
amount (mol) of each element
use \# mols as subscripts; convert to integers
empirical formula
divide \mathcal{M} by the molar mass for the empirical formula; multiply empirical formula by this number
molecular formula

3-35

Sample Problem 3.10

SOLUTION: Assuming there are 100. g of lactic acid;

$$
\begin{array}{ccc}
40.0 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}-} & 6.71 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}} & 53.3 \mathrm{~g} \times \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}-} \\
=3.33 \mathrm{~mol} \mathrm{C} & =6.66 \mathrm{~mol} \mathrm{H} & =3.33 \mathrm{~mol} \mathrm{O}
\end{array}
$$

$\underset{3.33}{\mathrm{C}_{3.33}} \underset{\frac{\mathrm{H}_{6.66}}{3.33}}{\frac{\mathrm{O}_{3.33}}{3.33} \longrightarrow \mathrm{CH}_{2} \mathrm{O} \text { empirical formula }{ }^{2} \longrightarrow \mathrm{Cl}^{2}}$
$\xrightarrow[\text { mass of } \mathrm{CH}_{2} \mathrm{O}]{\text { molar mass of lactate }} \frac{90.08 \mathrm{~g} / \mathrm{mol}}{30.03 \mathrm{~g} / \mathrm{mol}}=3$

Figure 3.4 Combustion apparatus for determining formulas of organic compounds.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}+\left(\mathrm{n}+\frac{\mathrm{m}}{4}\right) \mathrm{O}_{2}=\mathrm{nCO}(\mathrm{~g})+\frac{\mathrm{m}}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Sample Problem 3.11

Determining a Molecular Formula from Combustion Analysis

PROBLEM:

When a 1.000 g sample of vitamin $C(\mathcal{M}=176.12 \mathrm{~g} / \mathrm{mol})$ is placed in a combustion chamber and burned, the following data are obtained:
mass of CO_{2} absorber after combustion $=85.35 \mathrm{~g}$
mass of CO_{2} absorber before combustion $=83.85 \mathrm{~g}$
mass of $\mathrm{H}_{2} \mathrm{O}$ absorber after combustion $=37.96 \mathrm{~g}$
mass of $\mathrm{H}_{2} \mathrm{O}$ absorber before combustion $=37.55 \mathrm{~g}$
What is the molecular formula of vitamin C ?
PLAN: The masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ produced will give us the masses of C and H present in the original sample. From this we can determine the mass of O.
(mass after combustion - mass before) for each absorber = mass of compound in each absorber
mass of each compound x mass \% of oxidized element
mass of each oxidized element
mass of vitamin C - (mass of $\mathrm{C}+\mathrm{H}$)
mass of O
divide each mass by \mathcal{M}
mol of C, H, and O
use \# mols as subscripts; convert to integers
empirical formula

> molecular formula

Sample Problem 3.11

SOLUTION: For $\mathrm{CO}_{2}: 85.35 \mathrm{~g}-83.85 \mathrm{~g}=1.50 \mathrm{~g}$

$$
1.50 \mathrm{~g} \mathrm{CO}_{2} \times \frac{12.01 \mathrm{~g} \mathrm{C}^{4}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}=0.409 \mathrm{~g} \mathrm{C}^{2}
$$

For $\mathrm{H}_{2} \mathrm{O}: 37.96 \mathrm{~g}-37.55 \mathrm{~g}=0.41 \mathrm{~g}$
$0.41 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{2.016 \mathrm{~g} \mathrm{H}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.046 \mathrm{~g} \mathrm{H}$
mass of $\mathrm{O}=$ mass of vitamin $\mathrm{C}-$ (mass of $\mathrm{C}+$ mass of H)

$$
=1.000 \mathrm{~g}-(0.409+0.046) \mathrm{g}=0.545 \mathrm{~g} \mathrm{O}
$$

Sample Problem 3.11

Convert mass to moles:
$\frac{0.409 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}}=0.0341 \mathrm{~mol} \mathrm{C} \quad \frac{0.046 \mathrm{~g} \mathrm{H}}{1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}}=0.0456 \mathrm{~mol} \mathrm{H}$

$$
\frac{0.545 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}}=0.0341 \mathrm{~mol} \mathrm{O}
$$

Divide by smallest to get the preliminary formula:
C $\frac{0.0341}{0.0341}=1 \quad H \quad \frac{0.0456}{0.0341}=1.34 \quad$ O $\frac{0.0341}{0.0341}=1$

$$
\mathrm{C}_{1} \mathrm{H}_{1.34} \mathrm{O}_{1}=\mathrm{C}_{3} \mathrm{H}_{4.01} \mathrm{O}_{3} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}
$$

Divide molar mass by mass of empirical formula:

$$
\frac{176.12 \mathrm{~g} / \mathrm{mol}}{88.06 \mathrm{~g}}=2.000 \mathrm{~mol} \longrightarrow \mathrm{C}_{6} \mathbf{H}_{8} \mathbf{O}_{6}
$$

Table 3.2 Two Constitutional Isomers of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Property
$\mathscr{M}(\mathrm{g} / \mathrm{mol})$

Boiling Point
Density at $20^{\circ} \mathrm{C}$

Structural formula

Space-filling model
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\frac{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}}{\text { Ethanol } \quad \text { Dimethyl Ether }}$

$$
46.07 \quad 46.07
$$

$$
78.5^{\circ} \mathrm{C} \quad-25^{\circ} \mathrm{C}
$$

$0.789 \mathrm{~g} / \mathrm{mL} \quad 0.00195 \mathrm{~g} / \mathrm{mL}$ (liquid) (gas)

Writing and Balancing
 Chemical Equations

A chemical equation uses formulas to express the identities and quantities of substances involved in a physical or chemical change.

Figure 3.5
The formation of HF gas on the macroscopic and molecular levels.

3-43

UPLOADED BY AHMAD T JUNDI

Figure 3.6 A three-level view of the reaction between magnesium and oxygen.

3-44

Features of Chemical Equations

The equation must be balanced; the same number and type of each atom must appear on both sides.

UPLOADED BY AHMAD T JUNDI

Balancing a Chemical Equation

translate the statement
magnesium and oxygen gas react to give magnesium oxide:
$\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$
balance the atoms using coefficients; formulas cannot be changed

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

adjust coefficients if necessary
check that all atoms balance
specify states of matter

$$
2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \rightarrow \mathbf{2 M g O}(s)
$$

3-46

PROBLEM: Within the cylinders of a car's engine, the hydrocarbon octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$, one of many components of gasoline, mixes with oxygen from the air and burns to form carbon dioxide and water vapor. Write a balanced equation for this reaction.

PLAN:
translate the statement
balance the atoms
adjust the coefficients
check the atoms balance

SOLUTION:

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\frac{25}{2} \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\Lambda)+25 \mathrm{O}_{2}(g) \longrightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Molecular Scene Combustion of Octane

Balancing an Equation from a Molecular Scene

PROBLEM: The following molecular scenes depict an important reaction in nitrogen chemistry. The blue spheres represent nitrogen while the red spheres represent oxygen. Write a balanced equation for this reaction.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLAN: Determine the formulas of the reactants and products from their composition. Arrange this information in the correct equation format and balance correctly, including the states of matter.

Sample Problem 3.13

SOLUTION:

The reactant circle shows only one type of molecule, composed of 2 N and 5 O atoms. The formula is thus $\mathrm{N}_{2} \mathrm{O}_{5}$. There are 4 $\mathrm{N}_{2} \mathrm{O}_{5}$ molecules depicted.

The product circle shows two types of molecule; one has 1 N and 2 O atoms while the other has 2 O atoms. The products are NO_{2} and O_{2}. There are $8 \mathrm{NO}_{2}$ molecules and $2 \mathrm{O}_{2}$ molecules shown.

The reaction depicted is $\mathbf{4} \mathbf{N}_{2} \mathbf{O}_{5} \rightarrow \mathbf{8} \mathrm{NO}_{\mathbf{2}}+\mathbf{2} \mathbf{O}_{\mathbf{2}}$.
Writing the equation with the smallest whole-number coefficients and states of matter included;
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

Stoichiometric Calculations

- The coefficients in a balanced chemical equation
- represent the relative number of reactant and product particles
- and the relative number of moles of each.
- Since moles are related to mass
- the equation can be used to calculate masses of reactants and/or products for a given reaction.
- The mole ratios from the balanced equation are used as conversion factors.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Table 3.3 Information Contained in a Balanced Equation

Viewed in

Terms of \begin{tabular}{l}
Reactants

$\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g)$

\longrightarrow

Products

$3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
\end{tabular}

Molecules 1 molecule $\mathrm{C}_{3} \mathrm{H}_{8}+5$ molecules $\mathrm{O}_{2} \longrightarrow 3$ molecules $\mathrm{CO}_{2}+4$ molecules $\mathrm{H}_{2} \mathrm{O}$

Figure 3.7 Summary of amount-mass-number relationships in a chemical equation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

UPLOADED BY AHMAD T JUNDI
Sample Problem 3.14

Calculating Quantities of Reactants and Products: Amount (mol) to Amount (mol)

PROBLEM: Copper is obtained from copper(I) sulfide by roasting it in the presence of oxygen gas to form powdered copper(I) oxide and gaseous sulfur dioxide.
How many moles of oxygen are required to roast 10.0 mol of copper(I) sulfide?

PLAN:

write and balance the equation

use the mole ratio as a conversion factor

moles of oxygen

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$

$$
10.0 \mathrm{~mol}_{\mathrm{mu}}^{2} \mathrm{~S} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol}^{2} \mathrm{Cu} \mathrm{~S}}=15.0 \mathrm{~mol} \mathrm{O}_{2}
$$

$3-54$

Sample Problem 3.15

Calculating Quantities of Reactants and Products: Amount (mol) to Mass (g)

PROBLEM: During the process of roasting copper(I) sulfide, how many grams of sulfur dioxide form when 10.0 mol of copper(I) sulfide reacts?

PLAN: Using the balanced equation from the previous problem, we again use the mole ratio as a conversion factor.

mol of copper(I) sulfide

use the mole ratio as a conversion factor
mol of sulfur dioxide
multiply by \mathcal{M} of sulfur dioxide

> mass of sulfur dioxide

Sample Problem 3.15

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$

10.0 molicu $_{2} \mathrm{~S} \times \frac{2 \mathrm{molso}_{2}}{2 \text { molun }^{2}} \times \frac{64.07 \mathrm{~g} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{So}_{2}}=641 \mathrm{~g} \mathrm{SO}_{2}$

Sample Problem 3.16

Calculating Quantities of Reactants and Products: Mass to Mass

PROBLEM: During the roasting of copper(I) sulfide, how many kilograms of oxygen are required to form 2.86 kg of copper(I) oxide?

PLAN:
\square mass of oxygen
divide by \mathscr{M} of oxygen

mol of oxygen

use mole ratio as conversion factor
mol of copper(I) oxide
multiply by \mathcal{M} of copper(I) oxide
mass of copper(I) oxide

3-57

Sample Problem 3.16

SOLUTION: $\quad 2 \mathrm{Cu}_{2} \mathrm{~S}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(s)+2 \mathrm{SO}_{2}(g)$
$2.86 \mathrm{kgCu}_{2} \mathrm{O} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{O}}{143.10 \mathrm{gCu}_{2} \mathrm{O}}=20.0 \mathrm{~mol} \mathrm{Cu} 2 \mathrm{O}$
$20.0 \mathrm{~mol}^{2} \mathrm{Cu}_{2} \theta \times \frac{3 \mathrm{~mol}_{\mathrm{z}}}{2 \mathrm{molCu}_{2} \mathrm{O}} \times \frac{32.00 \mathrm{~g}_{\mathrm{O}}^{2}}{1 \mathrm{molo}_{\mathrm{z}}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}} \quad=0.959 \mathrm{~kg} \mathrm{O}_{2}$

Reactions in Sequence

- Reactions often occur in sequence.
- The product of one reaction becomes a reactant in the next.
- An overall reaction is written by combining the reactions;
- any substance that forms in one reaction and reacts in the next can be eliminated.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{C} \\
& \mathrm{C} \rightarrow \mathrm{~B} \\
& \hline \mathrm{~A} \rightarrow \mathrm{~B}
\end{aligned}
$$

UPLOADED BY AHMAD T JUNDI

Limiting Reactants

- So far we have assumed that reactants are present in the correct amounts to react completely.
- In reality, one reactant may limit the amount of product that can form.
- The limiting reactant will be completely used up in the reaction.
- The reactant that is not limiting is in excess - some of this reactant will be left over.

Sample Problem 3.17

Using Molecular Depictions in a LimitingReactant Problem

PROBLEM: Chlorine trifluoride, an extremely reactive substance, is formed as a gas by the reaction of elemental chlorine and fluorine. The molecular scene shows a representative portion of the reaction mixture before the reaction starts. (Chlorine is green, and fluorine is yellow.)

(a) Find the limiting reactant.
(b) Write a reaction table for the process.
(c) Draw a representative portion of the mixture after the reaction is complete. (Hint: The ClF_{3} molecule has 1 Cl atom bonded to 3 individual F atoms).

SOLUTION: The balanced equation is $\mathrm{Cl}_{2}(g)+3 \mathrm{~F}_{2}(g) \rightarrow 2 \mathrm{CIF}_{3}(g)$

There are 3 molecules of Cl_{2} and 6 molecules of F_{2} depicted:
3 moleculos $\mathrm{Cl}_{2} \times \frac{2 \text { molecules } \mathrm{ClF}_{3}}{1 \text { molecule } \mathrm{Cl}_{2}}=6$ molecules CIF_{3}
6 molecules $\mathrm{F}_{2} \times \frac{2 \text { molecules } \mathrm{ClF}_{3}}{3 \text { molecule } \mathrm{Cl}_{2}}=4$ molecules CIF_{3}
Since the given amount of F_{2} can form less product, it is the limiting reactant.

Sample Problem 3.17

We use the amount of F_{2} to determine the "change" in the reaction table, since F_{2} is the limiting reactant:

Molecules	$\mathrm{Cl}_{2}(g)+$	$\mathbf{3} \mathrm{F}_{2}(g)$	\rightarrow	$\mathbf{2 C I F}_{3}(g)$
Initial	3	6	0	
Change	-2	-6	+4	
Final	1	0	4	

The final reaction scene shows that all the F_{2} has reacted and that there is Cl_{2} left over. 4 molecules of CIF_{2} have formed:

Sample Problem 3.18

Calculating Quantities in a Limiting-

 Reactant Problem: Amount to AmountPROBLEM: In another preparation of $\mathrm{CIF}_{3}, 0.750 \mathrm{~mol}$ of Cl_{2} reacts with 3.00 mol of F_{2}.
(a) Find the limiting reactant.
(b) Write a reaction table.

PLAN: Find the limiting reactant by calculating the amount (mol) of CIF_{3} that can be formed from each given amount of reactant. Use this information to construct a reaction table.
SOLUTION: The balanced equation is $\mathrm{Cl}_{2}(g)+3 \mathrm{~F}_{2}(g) \rightarrow 2 \mathrm{CIF}_{3}(g)$

$$
\begin{aligned}
0.750 \mathrm{~mol}_{2} \times \frac{2 \mathrm{~mol} \mathrm{ClF}_{3}}{1 \mathrm{molCl}_{2}}=1.50 \mathrm{~mol} \mathrm{ClF}_{3} \\
3.00 \mathrm{~mol}_{\mathrm{L}} \times \frac{2 \mathrm{~mol} \mathrm{ClF}_{3}}{3 \mathrm{molF}_{2}}=2.00 \mathrm{~mol} \mathrm{ClF}_{3}
\end{aligned}
$$

Cl_{2} is limiting, because it yields less ClF_{3}.

Sample Problem 3.18

All the Cl_{2} reacts since this is the limiting reactant. For every $1 \mathrm{Cl}_{2}$ that reacts, $3 F_{2}$ will react, so $3\left(0.750\right.$) or 2.25 moles of F_{2} reacts.

Moles	$\mathrm{Cl}_{\mathbf{2}}(\mathrm{g})+\boldsymbol{3 \mathrm { F } _ { 2 } (g)} \boldsymbol{\rightarrow}$	$\mathbf{2 \mathrm { CIF } _ { 3 } (g)}$	
Initial	0.750	3.00	0
Change	$-\mathbf{0 . 7 5 0}$	-2.25	+1.50
Final	0	0.75	1.50

Sample Problem 3.19

Calculating Quantities in a LimitingReactant Problem: Mass to Mass

PROBLEM: A fuel mixture used in the early days of rocketry consisted of two liquids, hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and dinitrogen tetraoxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$, which ignite on contact to form nitrogen gas and water vapor.
(a) How many grams of nitrogen gas form when $1.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $2.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ are mixed?
(b) Write a reaction table for this process.

PLAN: Find the limiting reactant by calculating the amount (mol) of CIF_{3} that can be formed from each given mass of reactant. Use this information to construct a reaction table.

Sample Problem 3.19

mass (g) of $\mathrm{N}_{2} \mathrm{H}_{4}$
divide by \mathfrak{M}
mol of $\mathrm{N}_{2} \mathrm{H}_{4}$
mole ratio
mof N_{2}

mass (g) of $\mathrm{N}_{2} \mathrm{O}_{4}$
divide by \mathcal{M}
mol of $\mathrm{N}_{2} \mathrm{O}_{4}$
mole ratio
mol of N_{2}
select lower number of moles of \mathbf{N}_{2} multiply by \mathcal{M}

$$
\text { mass of } \mathrm{N}_{2}
$$

Sample Problem 3.19

SOLUTION: $\quad 2 \mathrm{~N}_{2} \mathrm{H}_{4}(\Lambda)+\mathrm{N}_{2} \mathrm{O}_{4}(\Lambda) \rightarrow 3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
For $\mathrm{N}_{2} \mathrm{H}_{4}: \quad 1.00 \times 10^{2} \mathrm{~g}_{2} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.05 \mathrm{gN}_{2} \mathrm{H}_{4}}=3.12 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}$

$$
3.12 \mathrm{~mol}_{2} \mathrm{~N}_{4} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{molN}_{2} \mathrm{H}_{4}}=4.68 \mathrm{~mol} \mathrm{~N}_{2}
$$

For $\mathrm{N}_{2} \mathrm{O}_{4}: 2.00 \times 10^{2} \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}=2.17 \mathrm{~mol} \mathrm{~N}_{2}$

$$
2.17 \mathrm{moln}_{2} \mathrm{~N}_{4} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2} \mathrm{O}_{4}}=6.51 \mathrm{~mol} \mathrm{~N}_{2}
$$

$\mathrm{N}_{2} \mathrm{H}_{4}$ is limiting and only 4.68 mol of N_{2} can be produced:

$$
4.68 \mathrm{~mol}_{2} \times \frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=131 \mathrm{~g} \mathrm{~N}_{2}
$$

Sample Problem 3.19

All the $\mathrm{N}_{2} \mathrm{H}_{4}$ reacts since it is the limiting reactant. For every 2 moles of $\mathrm{N}_{2} \mathrm{H}_{4}$ that react 1 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ reacts and 3 mol of N_{2} form:

$$
3.12 \mathrm{~mol}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{2 \mathrm{molN}_{2} \mathrm{H}_{4}}=1.56 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \text { reacts }
$$

Moles	$\mathbf{2 N}_{2} \mathbf{H}_{4}(\mathbf{I})+$	$\mathbf{N}_{2} \mathbf{O}_{\mathbf{4}}(\mathrm{)} \rightarrow$	$\mathbf{3 \mathbf { N } _ { 2 }}(\mathrm{g})+\mathbf{4 \mathbf { H } _ { 2 } \mathbf { O } (g)}$	
Initial	3.12	2.17	0	0
Change	$-\mathbf{- 3 . 1 2}$	$-\mathbf{1 . 5 6}$	$\mathbf{+ 4 . 6 8}$	+6.24
Final	0	0.61	4.68	6.24

Reaction Yields

The theoretical yield is the amount of product calculated using the molar ratios from the balanced equation.

The actual yield is the amount of product actually obtained.

The actual yield is usually less than the theoretical yield.

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

Can expressed in moles or grams

Figure 3.8
The effect of side reactions on the yield of the main product.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A + B
(reactants)

PROBLEM: Silicon carbide (SiC) is made by reacting sand(silicon dioxide, SiO_{2}) with powdered carbon at high temperature. Carbon monoxide is also formed. What is the percent yield if 51.4 kg of SiC is recovered from processing 100.0 kg of sand?

PLAN:
write balanced equation
find mol reactant
find mol product
find g product predicted percent yield

Sample Problem 3.20

SOLUTION: $\quad \mathrm{SiO}_{2}(s)+3 \mathrm{C}(s) \rightarrow \mathrm{SiC}(s)+2 \mathrm{CO}(g)$
What is the percent yield if 51.4 kg of SiC is recovered from processing 100.0 kg of sand?

$$
\begin{array}{rl}
100.0 \mathrm{~kg} \mathrm{SiO} & 2
\end{array} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{SiO}_{2}}{60.09 \mathrm{~g} \mathrm{SiO}_{2}}=1664 \mathrm{~mol} \mathrm{SiO}_{2} .
$$

Solution Stoichiometry

- Many reactions occur in solution.
- A solution consists of one or more solutes dissolved in a solvent.
- The concentration of a solution is given by the quantity of solute present in a given quantity of solution.
- Molarity (M) is often used to express concentration.

$$
\text { Molarity }=\frac{\text { moles solute }}{\text { liters of solution }} \quad M=\frac{\text { mol solute }}{\mathrm{L} \text { soln }}
$$

Sample Problem 3.21

Calculating the Molarity of a Solution

PROBLEM: What is the molarity of an aqueous solution that contains 0.715 mol of glycine $\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}\right)$ in 495 mL ?

PLAN:

Molarity is the number of moles of solute per liter of solution.

mol of glycine

divide by volume

concentration in mol/mL

$=1.44$ M glycine

$$
10^{3} \mathrm{~mL}=1 \mathrm{~L}
$$

```
molarity of glycine
```

Figure 3.9
Summary of mass-mole-number-volume relationships in solution.

MXV=\# of moles

Sample Problem 3.22

Calculating Mass of Solute in a Given Volume of Solution

PROBLEM: How many grams of solute are in 1.75 L of 0.460 M sodium monohydrogen phosphate buffer solution?

PLAN: Calculate the moles of solute using the given molarity and volume.
Convert moles to mass using the molar mass of the solute.

SOLUTION:

$$
\begin{gathered}
\text { volume of solution } \\
\text { multiply by } M
\end{gathered}
$$

moles of solute
multiply by \mathfrak{M}
grams of solute
$1.75 \mathrm{~L} \times \frac{0.460 \text { moles }}{1 \leftarrow}=0.805 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
$0.805 \mathrm{moliNa}_{2} \mathrm{HPO}_{4} \times \frac{141.96 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4}}=114 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}$

Figure 3.10 Converting a concentrated solution to a dilute solution.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Concentrated solution More solute particles per unit volume

Dilute solution
Fewer solute particles per unit volume
© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer.

Preparing a Dilute Solution from a Concentrated Solution

PROBLEM:"Isotonic saline" is a 0.15 Maqueous solution of NaCl . How would you prepare 0.80 L of isotonic saline from a 6.0 M stock solution?
PLAN: To dilute a concentrated solution, we add only solvent, so the moles of solute are the same in both solutions. The volume and molarity of the dilute solution gives us the moles of solute. Then we calculate the volume of concentrated solution that contains the same number of moles.

volume of dilute soln

multiply by M of dilute soln moles of NaCl in dilute soln $=$
mol NaCl in concentrated soln
divide by M of concentrated soln
L of concentrated soln

Sample Problem 3.23

$$
M_{\text {dil }} \times V_{\text {dil }}=\# \text { mol solute }=M_{\text {conc }} \times V_{\text {conc }}
$$

SOLUTION:

Using the volume and molarity for the dilute solution:

$$
0.80 \text { Lsolnx } \frac{0.15 \mathrm{~mol} \mathrm{NaCl}}{1 \text { Lsolm }}=0.12 \mathrm{~mol} \mathrm{NaCl}
$$

Using the moles of solute and molarity for the concentrated solution:

$$
0.12 \text { mol } \mathrm{NaCl} \times \frac{1 \mathrm{~L} \text { soln }}{6.0 \mathrm{~mol} \mathrm{NaCl}}=0.020 \mathrm{~L} \mathrm{soln}
$$

A 0.020 L portion of the concentrated solution must be diluted to a final volume of 0.80 L .

Visualizing Changes in Concentration

PROBLEM: The beaker and circle represent a unit volume of solution. Draw the solution after each of these changes:
(a) For every 1 mL of solution, 1 mL of solvent is added.
(b) One third of the volume of the solution is boiled off.

PLAN: Only the volume of the solution changes; the total number of moles of solute remains the same. Find the new volume and calculate the number of moles of solute per unit volume.

Sample Problem 3.24

SOLUTION: $\quad N_{\text {dil }} \times V_{\text {dil }}=N_{\text {conc }} \times V_{\text {conc }}$ where N is the number of particles.
(a) $\quad N_{\text {dil }}=N_{\text {conc }} \times \frac{V_{\text {conc }}}{V_{\text {dil }}}=8$ particles $\times \frac{1 \mathrm{~mL}}{2 \mathrm{~mL}}=4$ particles
(b) $N_{\text {conc }}=N_{\text {dil }} \times \frac{V_{\text {dil }}}{V_{\text {conc }}}=8$ particles $\times \frac{1 \mathrm{~mL}}{\frac{2}{3} \mathrm{~mL}}=12$ particles
(a)

Copyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sample Problem 3.25

Calculating Quantities of Reactants and Products for a Reaction in Solution

PROBLEM: A 0.10 MHCl solution is used to simulate the acid concentration of the stomach. How many liters of "stomach acid" react with a tablet containing 0.10 g of magnesium hydroxide?
PLAN: Write a balanced equation and convert the mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ to moles. Use the mole ratio to determine the moles of HCl , then convert to volume using molarity.

mass $\mathbf{M g}(\mathrm{OH})_{2}$
 divide by \mathcal{M}
 $\mathrm{mol} \mathrm{Mg}(\mathrm{OH})_{2}$

use mole ratio
mol HCl
L HCI
divide by M

Sample Problem 3.25

SOLUTION:

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \\
& 0.10 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}{58.33 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}}=1.7 \times 10^{-3} \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2} \\
& \left.=1.7 \times 10^{-3} \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}\right) \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg(OH})^{2}}=3.4 \times 10^{-3} \mathrm{~mol} \mathrm{HCl} \\
& 3.4 \times 10^{-3} \mathrm{molHCl} \times \frac{1 \mathrm{~L} \mathrm{HCl} \mathrm{soln}}{0.10 \mathrm{molHCl}}=3.4 \times 10^{-2} \mathrm{~L} \mathrm{HCl}
\end{aligned}
$$

PROBLEM: In a simulation mercury removal from industrial wastewater, 0.050 L of 0.010 Mmercury (II) nitrate reacts with 0.020 L of 0.10 M sodium sulfide. How many grams of mercury(II) sulfide form? Write a reaction table for this process.
PLAN: Write a balanced chemical reaction. Determine limiting reactant. Calculate the grams of mercury (II) sulfide product.
volume of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ soln
multiply by M
mol of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
mole ratio
mol of HgS

volume of $\mathrm{Na}_{2} \mathrm{~S}$ soln
multiply by \boldsymbol{M}
mol of $\mathrm{Na}_{2} \mathrm{~S}$
mole ratio
mol of HgS

select lower number of moles of HgS multiply by \mathcal{M}

$$
\text { mass of } \mathrm{HgS}
$$

Sample Problem 3.26

SOLUTION: $\quad \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow \mathrm{HgS}(s)+2 \mathrm{NaNO}_{3}(a q)$
$0.050 \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{0.010 \mathrm{molHg}\left(\mathrm{NO}_{3}\right)_{2}}{1-\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{HgS}}{1 \mathrm{molHg}\left(\mathrm{NO}_{3}\right)_{2}}$
$=5.0 \times 10^{-4} \mathrm{~mol} \mathrm{HgS}$
$0.020 \mathrm{LNa}_{2} \mathrm{~S} \times \frac{0.10 \mathrm{molNa}_{2} \mathrm{~S}}{1-\mathrm{Na}_{2} \mathrm{~S}} \times \frac{1 \mathrm{~mol} \mathrm{HgS}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}=2.0 \times 10^{-3} \mathrm{~mol} \mathrm{HgS}$
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ is the limiting reactant because it yields less HgS .

$$
5.0 \times 10^{-4} \mathrm{moHgS} \times \frac{232.7 \mathrm{~g} \mathrm{HgS}}{1 \mathrm{moHgs}}=0.12 \mathrm{~g} \mathrm{HgS}
$$

Sample Problem 3.26

The reaction table is constructed using the amount of $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ to determine the changes, since it is the limiting reactant.

Amount	$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$	$\mathrm{Na}_{2} \mathbf{S}(\mathrm{aq}) \rightarrow$	$\mathrm{HgS}(\boldsymbol{s})+$	$2 \mathrm{NaNO}_{3}(\mathrm{aq})$
Initial	5.0×10^{-4}	2.0×10^{-3}	0	0
Change	$\mathbf{- 5 . 0 \times 1 0 ^ { - 4 }}$	$-5.0 \times \mathbf{1 0}^{-4}$	$\mathbf{+ 5 . 0 \times 1 0 ^ { - 4 }}$	$\mathbf{+ 1 . 0 \times 1 0 ^ { - 3 }}$
Final	0	1.5×10^{-3}	5.0×10^{-4}	$+1.0 \times 10^{-3}$

Mc

Chapter 05

Lecture Outline

See separate Image PowerPointslides for all figures and tables pre-inserted into PowerPoint without notes.

UPLOADED BY AlRNAZA!

Chapter 5

Gases and the Kinetic-Molecular Theory

Uploaded By Ahmad A/-Jundi

Gases and the Kinetic Molecular Theory

5.1 An Overview of the Physical States of Matter
5.2 Gas Pressure and Its Measurement
5.3 The Gas Laws and Their Experimental Foundations
5.4 Rearrangements of the Ideal Gas Law
5.5 The Kinetic-Molecular Theory: A Model for Gas Behavior
5.6 Real Gases: Deviations from Ideal Behavior

An Overview of the Physical States of Matter

Distinguishing gases from liquids and solids.

- Gas volume changes significantly with pressure.
- Solid and liquid volumes are not greatly affected by pressure.
- Gas volume changes significantly with temperature.
- Gases expand when heated and shrink when cooled.
- The volume change is 50 to 100 times greater for gases than for liquids and solids.
- Gases flow very freely.
- Gases have relatively low densities.
- Gases form a solution in any proportions.
- Gases are freely miscible with each other.

Figure 5.1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gas: Particles are far apart, move freely, and fill the available space.

Liquid: Particles are close together but move around one another.

Solid: Particles are close together in a regular array and do not move around one another.

Gas Pressure and its Measurement

$$
\text { Pressure }=\frac{\text { force }}{\text { area }}
$$

Atmospheric pressure arises from the force exerted by atmospheric gases on the earth's surface.

Atmospheric pressure decreases with altitude.

Figure 5.2 Effect of atmospheric pressure on a familiar object.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

UPLOADED BY AHMAD T JUNDI
Figure 5.3 A mercury barometer.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 5.1 Common Units of Pressure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Unit

Normal Atmospheric Pressure at Sea Level and $0^{\circ} \mathrm{C}$

pascal (Pa); kilopascal (kPa)	$1.01325 \times 10^{5} \mathrm{~Pa} ; 101.325 \mathrm{kPa}$
atmosphere (atm)	$1 \mathrm{~atm}^{*}$
millimeters of mercury (mmHg)	$760 \mathrm{mmHg} *$
torr	$760 \mathrm{torr}^{*}$
pounds per square inch $\left(\mathrm{lb} / \mathrm{in}^{2}\right.$ or psi)	$14.7 \mathrm{lb} / \mathrm{in}^{2}$
bar	1.01325 bar

*This is an exact quantity; in calculations, we use as many significant figures as necessary.

PROBLEM: A geochemist heats a limestone $\left(\mathrm{CaCO}_{3}\right)$ sample and collects the CO_{2} released in an evacuated flask attached to a closed-end manometer. After the system comes to room temperature, $\Delta h=291.4 \mathrm{~mm} \mathrm{Hg}$. Calculate the CO_{2} pressure in torrs, atmospheres, and kilopascals.

PLAN: Construct conversion factors to find the other units of pressure.
SOLUTION: $\quad 291.4 \mathrm{mmHg} \times \frac{1 \text { torr }}{1 \mathrm{mmHgg}} \quad=291.4$ torr

$$
\begin{aligned}
& 291.4 \text { torf } \times \frac{1 \mathrm{~atm}}{760 \text { torf }}=0.3834 \mathrm{~atm} \\
& 0.3834 \mathrm{~atm} \times \frac{101.325 \mathrm{kPa}}{1 \mathrm{~atm}}=38.85 \mathrm{kPa}
\end{aligned}
$$

The Gas Laws

- The gas laws describe the physical behavior of gases in terms of 4 variables:
- pressure (P)
- temperature (T)
- volume (V)
- amount (number of moles, n)
- An ideal gas is a gas that exhibits linear relationships among these variables.
- No ideal gas actually exists, but most simple gases behave nearly ideally at ordinary temperatures and pressures.

Figure $5.4{ }^{U P L} A D D$ BY AHMAR BOUNDl', law, the relationship between the volume and pressure of a gas.

$5-12$

Boyle's Law

At constant temperature, the volume occupied by a fixed amount of gas is inversely proportional to the external pressure.

$$
V \propto \frac{1}{P} \quad \text { or } P V=\text { constant }
$$

At fixed T and n,
P decreases as V increases
P increases as V decreases

Figure 5.5 AB Charles's law, the relationship between the volume and temperature of a gas.

Figure $5.5 \mathrm{C} \quad$ Absolute zero $(0 \mathrm{~K})$ is the temperature at which an ideal gas would have a zero volume.

Charles's Law

At constant pressure, the volume occupied by a fixed amount of gas is directly proportional to its absolute (Kelvin) temperature.

$$
V \propto T \quad \frac{V}{T}=\text { constant }
$$

At fixed T and n, P decreases as Vincreases P increases as V decreases

UPLOADED BY AHMAD T JUNDI
Figure 5.6
The relationship between the volume and amount of a gas.

At fixed temperature and pressure, the volume occupied by a gas is directly proportional to the amount of gas.

Avogadro's Law: at fixed temperature and pressure, equal volumes of any ideal gas contain equal numbers of particles (or moles).

Gas Behavior at Standard Conditions

STP or standard temperature and pressure specifies a pressure of 1 atm (760 torr) and a temperature of $0^{\circ} \mathrm{C}(273.15 \mathrm{~K})$.

The standard molar volume is the volume of 1 mol of an ideal gas at STP. Standard molar volume $=22.4141$ L or 22.4 L

Figure 5.9 The volume of $1 \mathrm{~mol}(22.4 \mathrm{~L})$ of an ideal gas and of some familiar objects: 1 gal of milk (3.79 L), a basketball (7.50 L) and 2.00 L of a carbonated drink.

The Ideal Gas Law

$$
\begin{gathered}
p V=n R T \\
R=\frac{P V}{n T}=\frac{1 \mathrm{~atm} \times 22.414 \mathrm{~L}}{1 \mathrm{~mol} \times 273.15 \mathrm{~K}}=\frac{0.0821 \mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{gathered}
$$

R is the universal gas constant; the numerical value of R depends on the units used.

The ideal gas law can also be expressed by the combined equation:

$$
\frac{P_{1} V_{1}}{T_{1} \mathrm{n}_{1}}=\frac{P_{2} V_{2}}{T_{2} \mathrm{n}_{2}}
$$

Figure 5.10 The individual gas laws as special cases of the ideal gas law.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
IDEAL GAS LAW

PROBLEM: Boyle's apprentice finds that the air trapped in a J tube occupies $24.8 \mathrm{~cm}^{3}$ at 1.12 atm . By adding mercury to the tube, he increases the pressure on the trapped air to 2.64 atm. Assuming constant temperature, what is the new volume of air (in L)?

PLAN: The temperature and amount of gas are fixed, so this problem involves a change in pressure and volume only.

Sample Problem 5.2

SOLUTION:

$$
\begin{aligned}
& P_{1}=1.12 \mathrm{~atm} \quad P_{2}=2.64 \mathrm{~atm} \\
& V_{1}=24.8 \mathrm{~cm}^{3} \quad n \text { and } T \text { are constant } \\
& 24.8 \mathrm{~cm}^{3}=\text { unknown } \times \frac{1 \mathrm{~mL}}{1 \mathrm{~mm}^{3}} \times \frac{\mathrm{L}}{10^{3} \mathrm{~mL}}=0.0248 \mathrm{~L} \\
& \frac{P_{1} V_{1}}{n_{1} F_{1}}=\frac{P_{2} V_{2}}{-P_{2} T_{2}} \\
& V_{2}=V_{1} \times \frac{P_{1}}{P_{2}}=0.0248 \mathrm{~L} \times \frac{1.12 \mathrm{~atm}}{2.46 \mathrm{~atm}} \quad=0.0105 \mathrm{~L}
\end{aligned}
$$

Applying the Pressure-Temperature Relationship

PROBLEM: A steel tank used for fuel delivery is fitted with a safety valve that opens when the internal pressure exceeds 1.00×10^{3} torr. It is filled with methane at $23^{\circ} \mathrm{C}$ and 0.991 atm and placed in boiling water at exactly $100^{\circ} \mathrm{C}$. Will the safety valve open?

PLAN: We must determine if the pressure will exceed 1.00×10^{3} torr at the new temperature. Since the gas is in a steel tank, the volume remains constant.
P_{1} (atm)
1 atm $=760$ torr
P_{1} (torr)
multiply by T_{2} / T_{1}
P_{2} (torr)
T_{1} and $T_{2}\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{K}={ }^{\circ} \mathrm{C}+\mathbf{2 7 3 . 1 5}$
T_{1} and $T_{2}(\mathrm{~K})$
,

SOLUTION:

$$
\begin{array}{ll}
P_{1}=0.991 \mathrm{~atm} & P_{2}=\text { unknown } \\
T_{1}=23^{\circ} \mathrm{C} & T_{2}=100 . .^{\circ} \mathrm{C}
\end{array}
$$

n and V are constant
$0.991 \mathrm{~atm} \times \frac{760 \text { torf }}{1 \mathrm{~atm}}=753$ torr

$$
\begin{aligned}
& T_{1}=23+273.15=296 \mathrm{~K} \\
& T_{2}=100 .+273.15=373 \mathrm{~K}
\end{aligned}
$$

$$
\frac{P_{1} \forall_{1}}{A_{1} T_{1}}=\frac{P_{2} \forall_{2}}{A_{2} T_{2}}
$$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
P_{2}=P_{1} \times \frac{T_{2}}{T_{1}}=753 \text { torr } \times \frac{373 \mathrm{~K}}{296 \mathrm{~K}}=949 \text { torr }
$$

The safety valve will not open, since P_{2} is less than 1.00×10^{3} torr.

PROBLEM: A scale model of a blimp rises when it is filled with helium to a volume of $55.0 \mathrm{dm}^{3}$. When 1.10 mol of He is added to the blimp, the volume is $26.2 \mathrm{dm}^{3}$. How many more grams of He must be added to make it rise? Assume constant T and P.

PLAN: The initial amount of helium $\left(n_{1}\right)$ is given, as well as the initial volume (V_{1}) and the volume needed to make it rise $\left(V_{2}\right)$. We need to calculate n_{2} and hence the mass of He to be added.

```
n
        multiply by }\mp@subsup{V}{2}{}/\mp@subsup{N}{1}{
    n
        subtract n
    mol to be added
        multiply by }\mathcal{M
    g to be added
```


SOLUTION:

$$
\begin{aligned}
& n_{1}=1.10 \mathrm{~mol} \quad n_{2}=\text { unknown } \\
& V_{1}=26.2 \mathrm{dm}^{3} \quad V_{2}=55.0 \mathrm{dm}^{3} \\
& T \text { and } P \text { are constant } \\
& \frac{\boldsymbol{P}_{1} V_{1}}{n_{1} F_{1}}=\frac{\boldsymbol{P}_{2} V_{2}}{n_{2} T_{2}} \\
& \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \\
& n_{2}=n_{1} \times \frac{V_{2}}{V_{1}}=1.10 \mathrm{~mol}^{2} \frac{55.0 \mathrm{dm}^{3}}{26.2 \mathrm{dm}^{3}} \quad=2.31 \mathrm{~mol} \mathrm{He}^{3}
\end{aligned}
$$

Additional amount of He needed $=2.31 \mathrm{~mol}-1.10 \mathrm{~mol}=1.21 \mathrm{~mol} \mathrm{He}$

$$
1.21 \mathrm{molHe} \times \frac{4.003 \mathrm{~g} \mathrm{He}}{1 \mathrm{moHe}} \quad=4.84 \mathrm{~g} \mathrm{He}
$$

Solving for an Unknown Gas Variable at Fixed Conditions

PROBLEM: A steel tank has a volume of 438 L and is filled with 0.885 kg of O_{2}. Calculate the pressure of O_{2} at $21^{\circ} \mathrm{C}$.

PLAN: We are given V, T and mass, which can be converted to moles (n). Use the ideal gas law to find P.

$$
\begin{aligned}
& \text { SOLUTION: } \quad V=438 \mathrm{~L} \quad T=21^{\circ} \mathrm{C}=294 \mathrm{~K} \\
& n=0.885 \mathrm{~kg} \mathrm{O}_{2} \text { (convert to mol) } P \text { is unknown } \\
& 0.885 \mathrm{~kg} \mathrm{O}_{2} \times \frac{10^{3} \mathrm{~g}}{\frac{1}{\mathrm{~kg}}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{gO}_{2}}=27.7 \mathrm{~mol} \mathrm{O}_{2} \\
& P=\frac{n R T}{V}=\frac{27.7 \mathrm{~mol} \times 0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 294.15 \mathrm{~K}}{438 \mathrm{~L}}=1.53 \mathrm{~atm}
\end{aligned}
$$

Using Gas Laws to Determine a Balanced Equation

PROBLEM: The piston-cylinder is depicted before and after a gaseous reaction that is carried out at constant pressure. The temperature is 150 K before the reaction and 300 K after the reaction. (Assume the cylinder is insulated.)

Which of the following balanced equations describes the reaction?
(1) $\mathrm{A}_{2}(g)+\mathrm{B}_{2}(g) \rightarrow 2 \mathrm{AB}(g)$
(2) $2 \mathrm{AB}(g)+\mathrm{B}_{2}(g) \rightarrow 2 \mathrm{AB}_{2}(g)$
(3) $\mathrm{A}(g)+\mathrm{B}_{2}(g) \rightarrow \mathrm{AB}_{2}(g)$
(4) $2 \mathrm{AB}_{2}(g)+\mathrm{A}_{2}(g)+2 \mathrm{~B}_{2}(g)$

Sample Problem 5.6

PLAN: We are told that P is constant for this system, and the depiction shows that V does not change either. Since T changes, the volume could not remain the same unless the amount of gas in the system also changes.

SOLUTION: $n_{1} T_{1}=n_{2} T_{2} \quad \frac{n_{2}}{n_{1}}=\frac{T_{1}}{T_{2}}=\frac{150 \mathrm{~K}}{300 \mathrm{~K}}=1 / 2$
Since T doubles, the total number of moles of gas must halve i.e., the moles of product must be half the moles of reactant. This relationship is shown by equation (3).

$$
\mathrm{A}(g)+\mathrm{B}_{2}(g) \rightarrow \mathrm{AB}_{2}(g)
$$

The Ideal Gas Law and Gas Density

The density of a gas is

- directly proportional to its molar mass and
- inversely proportional to its temperature.

$$
\begin{gathered}
\text { density }=\frac{m}{V} \text { and moles }=\frac{m}{\mathscr{M}} \\
P V=\frac{m}{\mathscr{M}} R T
\end{gathered}
$$

$$
\frac{m}{V}=d=\frac{\mathscr{M} \times P}{R T}
$$

PROBLEM: Find the density (in g / L) of $\mathrm{CO}_{2}(g)$ and the number of molecules per liter
(a) at STP and (b) at room conditions ($20 .{ }^{\circ} \mathrm{C}$ and 1.00 atm).

PLAN: We can use the molar mass of CO_{2} to find its density from the ideal gas equation.

SOLUTION: (a) At STP, or 273 K and 1.00 atm :

$$
\begin{gathered}
d=\frac{\mathcal{M} \times P}{R T}=\frac{44.01 \mathrm{~g} / \mathrm{mol} \times 1.00 \mathrm{~atm}}{0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273 \mathrm{~K}}=1.96 \mathrm{~g} / \mathrm{L} \\
\frac{1.96 \mathrm{gCO}_{2}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{CO}}{2} \times \frac{6.022 \times 10^{23} \mathrm{molecules}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \\
=2.68 \times 10^{22} \text { molecules } \mathrm{CO}_{2} / \mathrm{L}
\end{gathered}
$$

SOLUTION: (b) At $20 .{ }^{\circ} \mathrm{C}$ and 1.00 atm :

$$
\begin{aligned}
& T=20 .{ }^{\circ} \mathrm{C}+273.15=293 \mathrm{~K} \\
& d=\frac{\mathcal{M} \times P}{R T}=\frac{44.01 \mathrm{~g} / \mathrm{mol} \times 1.00 \mathrm{atmm}}{0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\text { mol: } \mathrm{K}} \times 293 \mathrm{~K}}=1.83 \mathrm{~g} / \mathrm{L} \\
& \frac{1.83 \mathrm{~g} \mathrm{O}}{2} \\
& 1 \mathrm{~L}
\end{aligned} \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}} .
$$

$$
=2.50 \times 10^{22} \text { molecules } \mathrm{CO}_{2} / \mathrm{L}
$$

UPLOADED BY AHMAD T JUNDI

Molar Mass from the Ideal Gas Law

$$
n=\frac{m}{\mathscr{M}}=\frac{P V}{R T}
$$

PROBLEM: An organic chemist isolates a colorless liquid from a petroleum sample. She places the liquid in a preweighed flask and puts the flask in boiling water, causing the liquid to vaporize and fill the flask with gas. She closes the flask and reweighs it. She obtains the following data:

Volume (V) of flask $=213 \mathrm{~mL}$ mass of flask + gas $=78.416 \mathrm{~g}$

$$
\begin{aligned}
& T=100.0^{\circ} \mathrm{C} \quad P=754 \text { torr } \\
& \text { mass of flask }=77.834 \mathrm{~g}
\end{aligned}
$$

Calculate the molar mass of the liquid.

PLAN: The variables V, T and P are given. We find the mass of the gas by subtracting the mass of the flask from the mass of the flask with the gas in it, and use this information to calculate \mathcal{M}.

Sample Problem 5.8

SOLUTION: $\quad m$ of gas $=(78.416-77.834)=0.582 \mathrm{~g}$
$V=213 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}}=0.213 \mathrm{~L} \quad T=100.0^{\circ} \mathrm{C}+273.15=373.2 \mathrm{~K}$
$P=754$ terf $\times \frac{1 \mathrm{~atm}}{760 \text { terf }}=0.992 \mathrm{~atm}$

$$
\mathcal{M}=\frac{m R T}{P V}=\frac{0.582 \mathrm{~g} \times 0.0821 \frac{\mathrm{~atm} \cdot \frac{\mathrm{~L}}{}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 373 \mathrm{~K}}{0.213 \mathrm{~L} \times 0.992 \mathrm{~atm}} \quad=84.4 \mathrm{~g} / \mathrm{mol}
$$

Mixtures of Gases

- Gases mix homogeneously in any proportions.
- Each gas in a mixture behaves as if it were the only gas present.
- The pressure exerted by each gas in a mixture is called its partial pressure.
- Dalton's Law of partial pressures states that the total pressure in a mixture is the sum of the partial pressures of the component gases.
- The partial pressure of a gas is proportional to its mole fraction:

$$
P_{\mathrm{A}}=X_{\mathrm{A}} \times P_{\text {total }} \quad X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\text {total }}}
$$

PROBLEM: In a study of O_{2} uptake by muscle at high altitude, a physiologist prepares an atmosphere consisting of 79 mole \% N_{2}, 17 mole $\%{ }^{16} \mathrm{O}_{2}$, and 4.0 mole $\%{ }^{18} \mathrm{O}_{2}$. (The isotope ${ }^{18} \mathrm{O}$ will be measured to determine the O_{2} uptake.) The pressure of the mixture is 0.75 atm to simulate high altitude. Calculate the mole fraction and partial pressure of ${ }^{18} \mathrm{O}_{2}$ in the mixture.

PLAN: Find $X_{18} \mathrm{O}_{2}$ and $P_{18} \mathrm{O}_{2}$ from $P_{\text {total }}$ and $\mathrm{mol} \%^{18} \mathrm{O}_{2}$.
mole $\%{ }^{18} \mathrm{O}_{2}$
divide by 100
mole fraction, X ${ }^{18} \mathrm{O}_{2}$
multiply by $P_{\text {total }}$
partial pressure P_{18}

Sample Problem 5.9

SOLUTION:

$$
\begin{gathered}
X_{18 \mathrm{O}_{2}}=\frac{4.0 \mathrm{~mol} \%{ }^{18} \mathrm{O}_{2}}{100}=0.040 \\
P_{18 \mathrm{O}_{2}}=X_{18} \times \mathrm{O}_{2} \times P_{\text {total }}=0.040 \times 0.75 \mathrm{~atm}=0.030 \mathrm{~atm}
\end{gathered}
$$

UPLOADED BY AHMAD T JUNDI
Table 5.2 Vapor Pressure of Water $\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)+$ at Different T

$\left.\boldsymbol{T}^{0} \mathrm{C}\right)$	$\boldsymbol{P}_{\mathbf{H}_{\mathbf{2}} \mathbf{O}^{(\text {torr })}}$	$\left.\boldsymbol{T}^{0} \mathrm{C}\right)$	$\boldsymbol{P}_{\mathbf{H}_{\mathbf{2}} \mathbf{O}}{ }^{(\text {torr })}$
0	4.6	40	55.3
5	6.5	45	71.9
10	9.2	50	92.5
12	10.5	55	118.0
14	12.0	60	149.4
16	13.6	65	187.5
18	15.5	70	233.7
20	17.5	75	289.1
22	19.8	80	355.1
24	22.4	85	433.6
26	25.2	90	525.8
28	28.3	95	633.9
30	31.8	100	760.0
35	42.2		

Figure 5.11 Collecting a water-insoluble gaseous product and determining its pressure.

The vapor pressure ($P_{\mathrm{H}_{2} \mathrm{O}}$) adds to $P_{\text {gas }}$ to give $P_{\text {total }}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calculating the Amount of Gas

Collected over Water

PROBLEM: Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is produced in the laboratory when calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water:

$$
\mathrm{CaC}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(g)+\mathrm{Ca}(\mathrm{OH})_{2}(a q)
$$

A collected sample of acetylene has a total gas pressure of 738 torr and a volume of 523 mL . At the temperature of the gas $\left(23^{\circ} \mathrm{C}\right)$, the vapor pressure of water is 21 torr. How many grams of acetylene are collected?

PLAN: The difference in pressures will give P for the $\mathrm{C}_{2} \mathrm{H}_{2}$. The number of moles (n) is calculated from the ideal gas law and converted to mass using the molar mass.

PLAN:

$P_{\text {total }}$

 subtract P for $\mathrm{H}_{2} \mathrm{O}$$P$ of $\mathrm{C}_{2} \mathrm{H}_{2}$
use ideal gas law
n of $\mathrm{C}_{2} \mathrm{H}_{2}$
multiply by \mathcal{M}

```
mass of \(\mathrm{C}_{2} \mathrm{H}_{2}\)
```


SOLUTION:

$$
\begin{aligned}
& P_{\mathrm{C}_{2} \mathrm{H}_{2}}=(738-21) \text { torr }=717 \text { torr } \\
& P=717 \text { torr } \times \frac{1 \mathrm{~atm}}{760 \text { terf }}=0.943 \mathrm{~atm}
\end{aligned}
$$

$$
V=523 \mathrm{ml} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{mt}}=0.523 \mathrm{~L}
$$

$$
T=23^{\circ} \mathrm{C}+273.15 \mathrm{~K}=296 \mathrm{~K}
$$

SOLUTION:

$$
{ }^{n} \mathrm{C}_{2} \mathrm{H}_{2}=\frac{P V}{R T}=\frac{0.943 \mathrm{~atm} \times 0.523 \mathrm{~L}}{0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 296 \mathrm{~K}}=0.0203 \mathrm{~mol}
$$

$$
0.0203 \mathrm{~mol} \times \frac{26.04 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}}{1 \mathrm{mot} \mathrm{C}_{2} \mathrm{H}_{2}}=0.529 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}
$$

The Ideal Gas Law and Stoichiometry

Figure 15.12
The relationships among the amount (mol, n) of gaseous reactant (or product) and the gas pressure (P), volume (V, and temperature (7).

PROBLEM: What volume of H_{2} gas at 765 torr and $225^{\circ} \mathrm{C}$ is needed to reduce 35.5 g of copper(II) oxide to form pure copper and water?

PLAN: Write a balanced equation. Convert the mass of copper (II) oxide to moles and find the moles of H_{2}, using the mole ratio from the balanced equation. Calculate the corresponding volume of H_{2} using the ideal gas law.

mass (g) of CuO
divide by \mathscr{M}
mol CuO

use mole ratio
mol H2

$$
\text { volume of } \mathrm{H}_{2}
$$

ideal gas law

Sample Problem 5.11

SOLUTION: $\quad \mathrm{CuO}(s)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{O}(g)$

$$
\begin{aligned}
& 35.5 \mathrm{~g} \mathrm{CuO} \times \frac{1 \mathrm{~mol} \mathrm{CuO}}{79.55 \mathrm{gCuO}} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1 \mathrm{molCul}}=0.446 \mathrm{~mol} \mathrm{H}_{2} \\
& P=765 \text { torr } \times \frac{1 \mathrm{~atm}}{760 \text { torf }}=1.01 \mathrm{~atm} \quad T=225^{\circ} \mathrm{C}+273.15 \mathrm{~K}=498 \mathrm{~K} \\
& V=\frac{n R T}{P}=\frac{0.446 \mathrm{~mol} \mathrm{H}_{2} \times 0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 498 \mathrm{~K}}{1.01 \mathrm{~atm}} \quad=18.1 \mathrm{~L} \mathrm{H}_{2}
\end{aligned}
$$

Using Gas Variables to Find Amounts of Reactants and Products II

PROBLEM: What mass of potassium chloride forms when 5.25 L of chlorine gas at 0.950 atm and 293 K reacts with 17.0 g of potassium metal?

PLAN: First we must write a balanced equation. Since the quantities of both reactants are given, we must next determine which reactant is limiting. We will use the ideal gas law to calculate the moles of Cl_{2} present.

SOLUTION: The balanced equation is:

$$
\mathrm{Cl}_{2}(g)+2 \mathrm{~K}(s) \rightarrow 2 \mathrm{KCl}(s)
$$

For Cl_{2} :
$P=0.950 \mathrm{~atm} \quad V=5.25 \mathrm{~L}$
$T=293 \mathrm{~K} \quad n=$ unknown

Sample Problem 5.12

$$
{ }^{n} \mathrm{Cl}_{2}=\frac{P V}{R T}=\frac{0.950 \mathrm{~atm} \times 5.25 \mathrm{~L}}{0.0821 \frac{\mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 293 \mathrm{~K}}=0.207 \mathrm{~mol} \mathrm{Cl}_{2}
$$

For $\mathrm{Cl}_{2}: \quad 0.207 \mathrm{~mol}_{2} \times \frac{2 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{molCl}_{2}}=0.414 \mathrm{~mol} \mathrm{KCl}$
For K: $\quad 17.0 \mathrm{gK} \times \frac{1 \mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{gK}} \times \frac{2 \mathrm{~mol} \mathrm{KCl}}{2 \mathrm{molk}}=0.435 \mathrm{KCl}$
Cl_{2} is the limiting reactant.

$$
0.414 \text { mol } \mathrm{KCl} \times \frac{74.55 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}=30.9 \mathrm{~g} \mathrm{KCl}
$$

The-KineticuMolecular Theory: A Model for Gas Behavior

Postulate 1: Particle volume

Gas particles are tiny with large spaces between them. The volume of each particle is so small compared to the total volume of the gas that it is assumed to be zero.

Postulate 2: Particle motion

Gas particles are in constant, random, straight-line motion except when they collide with each other or with the container walls.

Postulate 3: Particles collision

Collisions are elastic, meaning that colliding particles exchange energy but do not lose any energy due to friction. Their total kinetic energy is constant. Between collisions the particles do not influence each other by attractive or repulsive forces.

* Gas conforms to theses postulates is called ideal.
 temperatures.

Each particle in container it has molecular speed (u), most particles are moving near the most probable speed but some are much faster and other much slower.

$5-52$

A Molecalapap silew of threlgas law
1- Origin of pressure

- Pressure arises from countless collisions between gas particles and walls.
- Grater number of particles the more frequently colloid with the container, and so the greater the pressure.

 Figure 5.1

$$
V \propto \frac{1}{P}
$$

$P_{\text {ext }}$ increases, T and n fixed

Higher $P_{\text {ext }}$ causes lower V, which results in more collisions, because particles hit the walls from a shorter average distance ($d_{2}<d_{1}$) collision frequency increase. As a result, $P_{\text {gas }}$ increase untie it again $=P_{\text {ext. }}$

3- A MOlecular view of Dalton's law
 $P_{\text {total }}=P_{A}+P_{B}$

Figure 5.16

$$
\begin{aligned}
P_{\mathrm{A}} & =P_{\text {total }} \\
& =1.0 \mathrm{~atm} \\
n_{\mathrm{A}} & =0.60 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
P_{\mathrm{B}} & =P_{\text {total }} \\
& =0.50 \mathrm{~atm} \\
n_{\mathrm{B}} & =0.30 \mathrm{~mol}
\end{aligned}
$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Increase number of particles lead to increase number of collision with the wall per second.

4- AUh

Figure 5.17

At $T_{1}, P_{\text {gas }}=P_{\text {atm }}$.

Higher T increases collision frequency, so $\boldsymbol{P}_{\text {gas }}>\boldsymbol{P}_{\text {atm. }}$.

Thus, Vincreases until $P_{\text {gas }}=P_{\text {atm }}$ at T_{2}.

Figure 5.18

For a given amount, n_{1}, of gas, $P_{\text {gas }}=P_{\text {atm }}$.

When gas is added to reach n_{2} the collision frequency of the particles increases, so $P_{\text {gas }}>P_{\text {atm }}$.

As a result, V increases until $P_{\text {gas }}=P_{\text {atm }}$ again.

Kinetic Energy and Gas Behavior

At a given T, all gases in a sample have the same average kinetic energy.

$$
E_{\mathrm{k}}=\frac{1}{2} \text { mass } \mathrm{x} \mathrm{speed}^{2}
$$

Kinetic energy depends on both the mass and the speed of a particle.

One mole of $\mathrm{H}_{2}(2 \mathrm{~g} / \mathrm{mol})$ and 1 mole of $\mathrm{O}_{2}(32$ $\mathrm{g} / \mathrm{mol}$) occupied the same volume.

At the same T, a heavier gas particle moves more slowly than a lighter one. increase mass reduce the speed.

Figure 5.19 The relationship between molar mass and molecular speed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Graham's Law of Effusion

Effusion is the process by which a gas escapes through a small hole in its container into an evacuated space.

Graham's law of effusion states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass.

A lighter gas moves more quickly and therefore has a higher rate of effusion than a heavier gas at the same T.

Rate of effusion $\propto \frac{1}{\sqrt{\mathcal{M}}}$

Figure 5.20 Effusion. Lighter (black) particles effuse faster than heavier (red) particles.

Diffusion : the movement of one gas through another, also described by grahams law.

PROBLEM: A mixture of helium (He) and methane $\left(\mathrm{CH}_{4}\right)$ is placed in an effusion apparatus. Calculate the ratio of their effusion rates.

PLAN: The effusion rate is inversely proportional $\sqrt{\mathscr{M}}$ for each gas, so we find the molar mass for each substance using its formula and take the square root. The ratio of the effusion rates is the inverse of the ratio of these square roots.

SOLUTION: $\quad \mathcal{M}$ of $\mathrm{CH}_{4}=16.04 \mathrm{~g} / \mathrm{mol} \quad \mathcal{M}$ of $\mathrm{He}=4.003 \mathrm{~g} / \mathrm{mol}$
$\frac{\text { rate }}{\text { rate } \mathrm{CH}_{4}}=\sqrt{\frac{16.04}{4.003}}=\mathbf{2 . 0 0 2}$

Real Gases: Deviations from Ideal Behavior

- The kinetic-molecular model describes the behavior of ideal gases. Real gases deviate from this behavior.
- Real gases have real volume.
- Gas particles are not points of mass, but have volumes determined by the sizes of their atoms and the bonds between them.
- Real gases do experience attractive and repulsive forces between their particles.
- Real gases deviate most from ideal behavior at low temperature and high pressure.

Table 5.3 Molar Volume of Some Common Gases at STP ($0^{\circ} \mathrm{C}$ and 1 atm)

Gas

He	22.435	-268.9
H_{2}	22.432	-252.8
Ne	22.422	-246.1
Ideal gas	22.414	-
Ar	22.397	-185.9
$\mathrm{~N}_{2}$	22.396	-195.8
O_{2}	22.390	-183.0
CO	22.388	-191.5
Cl_{2}	22.184	-34.0
NH_{3}	22.079	-33.4

Deviation increase as a boiling point increase

Figure 5.21

Deviations from ideal behavior with increasing external pressure

Figure 5.22

The effect of interparticle attractions on measured gas pressure.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

At ordinary $P_{\text {ext }}$, particles are too far apart to interact.

At moderately high $P_{\text {ext }}$, particles are close enough to interact.

Interparticle attractions (red arrows) lower the force of collisions with the container wall.

Figure 5.23 The effect of particle volume on measured gas volume.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

At ordinary $P_{\text {ext }}$, free volume \approx container volume because particle volume is an insignificant portion of container volume.

At very high $P_{\text {ext }}$, free volume < container volume because particle volume becomes a significant portion of container volume.

The van der Waals equation

- The van der Waals equation adjusts the ideal gas law to take into account
- the real volume of the gas particles and
- the effect of interparticle attractions.

Van der Waals equation for n moles of a real gas

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

The constant (a) relates to factors that influence the attraction between particles.

The constant b relates to particle volume.

Uploaded By Ahmad Al-Jundi
UPLOADED BY AHMAD T JUNDI
Table 5.4 Van der Waals Constants for Some Common Gases

Gas	$\boldsymbol{a}\left(\frac{\mathbf{a t m} \cdot \mathbf{L}^{2}}{\mathbf{m o l}}\right)$	$\boldsymbol{b}\left(\frac{\mathbf{L}}{\mathrm{mol}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CH_{4}	2.25	0.0428
$\mathrm{CO}_{\mathrm{CO}}$	1.45	0.0395
CO_{2}	3.59	0.0427
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

$5-69$

Chapter 6

Thermochemistry:
 Energy Flow and Chemical Change

Thermochemistry: Energy Flow and Chemical Change

6.1 Forms of Energy and Their Interconversion
6.2 Enthalpy: Chemical Change at Constant Pressure
6.3 Calorimetry: Measuring the Heat of a Chemical or Physical Change
6.4 Stoichiometry of Thermochemical Equations
6.5 Hess's Law: Finding ΔH of Any Reaction
6.6 Standard Enthalpies of Reaction ($\Delta H_{\text {rxn }}^{\circ}$)

Transfer and Interconversion of Energy

Thermodynamics is the study of energy and its transformations.

Thermochemistry is a branch of thermodynamics that deals with the heat involved in chemical and physical changes.

When energy is transferred from one object to another, it appears as work and heat.

The System and Its Surroundings

A meaningful study of any transfer of energy requires that we first clearly define both the system and its
surroundings.
System + Surroundings = Universe
The internal energy, \boldsymbol{E}, of a system is the sum of the potential and kinetic energies of all the particles present.

The total energy of the universe remains constant. A change in the energy of the system must be accompanied by an equal and opposite change in the energy of the surroundings.

UPLOADED BY AHMAD T JUNDI

Figure 6.1 Energy diagrams for the transfer of internal energy (E) between a system and its surroundings.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=E_{\text {products }}-E_{\text {reactants }}
$$

Figure 6.2

The two cases where energy is transferred as heat only.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The system releases heat

The system absorbs heat

Figure 6.3A The two cases where energy is transferred as work only.

The system does work on the surroundings.

Figure 6.3B The two cases where energy is transferred as work only.

The system has work done on it by the surroundings.

*From the perspective of the system.
Which of these are not state functions?
A) volume
B) temperature
C) pressure
D) heat
E) energy
A) internal energy
B) volume
C) work
D) pressure
E) enthalpy

A system which undergoes an adiabatic change (i.e., $q=0$)
A system which undergoes an isothermal change (i.e., constant temperature)

Figure 6.4 Two different paths for the energy change of a system.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Even though q and w for the two paths are different, the total ΔE is the same for both.

The Law of Energy Conservation

The first law of Thermodynamics states that the total energy of the universe is constant.

Energy is conserved, and is neither created nor destroyed.
Energy is transferred in the form of heat and/or work.

$$
\Delta E_{\text {universe }}=\Delta E_{\text {system }}+\Delta E_{\text {surroundings }}=0
$$

Units of Energy

The SI unit of energy is the joule (J).
$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$
The calorie was once defined as the quantity of energy needed to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$. $1 \mathrm{cal}=4.184 \mathrm{~J}$

The British Thermal Unit (Btu) is often used to rate appliances.
1 Btu is equivalent to 1055 J .

Determining the Change in Internal Energy of a System

PROBLEM: When gasoline burns in a car engine, the heat released causes the products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ to expand, which pushes the pistons outward. Excess heat is removed by the car's radiator. If the expanding gases do 451 J of work on the pistons and the system releases 325 J to the surroundings as heat, calculate the change in energy (ΔE) in J, kJ, and kcal.

PLAN: Define the system and surroundings and assign signs to \boldsymbol{q} and w correctly. Then $\Delta E=q+w$. The answer can then be converted from J to kJ and to kcal.

SOLUTION:

Heat is given out by a chemical reaction, so it makes sense to define the system as the reactants and products involved. The pistons, the radiator and the rest of the car then comprise the surroundings.

Heat is given out by the system, so $\boldsymbol{q = - 3 2 5} \mathbf{J}$
The gases expand to push the pistons, so the system does work on the surroundings and $\boldsymbol{w}=-451 \mathrm{~J}$

$$
\begin{gathered}
\Delta E=\boldsymbol{q}+\boldsymbol{w}=-325 \mathrm{~J}+(-451 \mathrm{~J})=-776 \mathrm{~J} \\
-776+\times \frac{1 \mathrm{~kJ}}{103 \mathrm{~J}}=-\mathbf{0 . 7 7 6 \mathrm { kJ }} \quad-0.776 \mathrm{~kJ} \times \frac{1 \mathrm{kcal}}{4.184 \mathrm{~kJ}}=-\mathbf{0 . 1 8 5 \mathrm { kcal }}
\end{gathered}
$$

Enthalpy: Chemical Change at Constant Pressure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Surroundings

$$
\begin{gathered}
w=-P \Delta V \\
H=E+P V \\
\text { where H is enthalpy } \\
\Delta H=\Delta E+P \Delta V \\
q_{p}=\Delta E+P \Delta V=\Delta H
\end{gathered}
$$

An expanding gas pushing back the atmosphere does $P V$ work ($w=-P \Delta V$).

When $\Delta H \approx \Delta E$?

$\Delta H=\Delta E+P \Delta V$

1. Reactions that do not involve gases.
2. Reactions in which the number of moles of gas does not change.
3. Reactions in which the number of moles of gas does change but q is \ggg $P \Delta V$.

Figure 6.6
Enthalpy diagrams for exothermic and endothermic processes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \quad \mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

A Exothermic process

A Exothermic process Heat is given out.

B Endothermic process Heat is taken in.

Drawing Enthalpy Diagrams and Determining the Sign of ΔH

PROBLEM: In each of the following cases, determine the sign of $\Delta \mathrm{H}$, state whether the reaction is exothermic or endothermic, and draw an enthalpy diagram.
(a) $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+285.8 \mathrm{~kJ}$
(b) $40.7 \mathrm{~kJ}+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$

PLAN: From each equation, note whether heat is a "reactant" or a "product". If heat is taken in as a "reactant", the process is endothermic. If heat is released as a "product", the process is exothermic.

For the enthalpy diagram, the arrow always points from reactants to products. For endothermic reactions, the products are at a higher energy than the reactants, since the reactants take in heat to form the products.

Sample Problem 6.2

SOLUTION: (a) $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{f})+285.8 \mathrm{~kJ}$

Heat is a "product" for this reaction and is therefore given out, so the reaction is exothermic. The reactants are at a higher energy than the products.

Sample Problem 6.2

SOLUTION: (b) $40.7 \mathrm{~kJ}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Heat is a "reactant" in this reaction and is therefore absorbed, so the reaction is endothermic. The reactants are at a lower energy than the products.

uploaded by ahmad tuund Calorimetry

heat capacity of a substance is the quantity of heat required to change its temperature by 1 K .

$q \dot{\alpha} \Delta T$

$q=$ constant $\times \Delta T$

$q=$ heat capacity $\times \Delta T$

$$
\begin{aligned}
& q=\text { heat lost or gained } \\
& c=\text { specific heat capacity } \\
& m=\text { mass in } \mathrm{g} \\
& \Delta T=T_{\text {final }}-T_{\text {initial }}
\end{aligned}
$$

The specific heat capacity (c) of a substance is the quantity of heat required to change the temperature of 1 gram of the substance by 1 K . Unit of c is $(\mathrm{J} / \mathrm{g} \cdot \mathrm{K})$

$$
q=c \times m \times \Delta T
$$

and Materials

Substance \begin{tabular}{c}
Specific Heat

Capacity $(\mathrm{J} / \mathrm{g} \cdot \mathrm{K})$

\quad Substance

Specific Heat

Capacity $(\mathrm{J} / \mathrm{g} \cdot \mathrm{K})^{*}$
\end{tabular}

Elements

aluminum, Al	0.900
graphite, C	0.711
iron, Fe	0.450
copper, Cu	0.387
gold, Au	0.129

Solid materials

wood	1.76
cement	0.88
glass	0.84
granite	0.79
steel	0.45

Compounds

$$
\begin{array}{ll}
\text { water, } \mathrm{H}_{2} \mathrm{O}(\Lambda) & 4.184 \\
\text { ethyl alcohol, } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\Lambda) & 2.46 \\
\text { ethylene glycol, }\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(\Lambda) & 2.42 \\
\text { carbon tetrachloride, } \mathrm{CCl}_{4}(\Lambda) & 0.862 \\
\hline
\end{array}
$$

UPLOADED BY AHMAD T JUNDI

Sample Problem 6.3

Finding the Quantity of Heat from a Temperature Change

PROBLEM: A layer of copper welded to the bottom of a skillet weighs 125 g . How much heat is needed to raise the temperature of the copper layer from $25^{\circ} \mathrm{C}$ to $300 .{ }^{\circ} \mathrm{C}$? The specific heat capacity (c) of Cu is $0.387 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$.

PLAN: We know the mass (125 g) and $c(0.387 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K})$ of Cu and can find ΔT in ${ }^{\circ} \mathrm{C}$, which equals ΔT in K . We can use the equation $q=c \times m \times \Delta T$ to calculate the heat.

SOLUTION: $\quad \Delta T=T_{\text {final }}-T_{\text {initial }}=300 .-25=275^{\circ} \mathrm{C}=275 \mathrm{~K}$
$q=c \times m \times \Delta T=\frac{0.387 \mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}} \times 125 \mathrm{~g} \times 275 \mathrm{~K}=1.33 \times 10^{4} \mathrm{~J}$

Commqndabees @f calorimetry

1-Constant pressure calorimetry

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Coffee-cup calorimeter.

Device used to find the specific heat capacity for solid does not dissolve or react with water .
$-\mathrm{q}_{\text {solid }}=\mathrm{q} \mathrm{H}_{2} \mathrm{O}$
$c_{\text {solid }}=\frac{c_{\mathrm{H}_{2} \mathrm{O}} \times \text { mass }_{\mathrm{H}_{2} \mathrm{O}} \times \Delta T_{\mathrm{H}_{2} \mathrm{O}}}{\text { mass }_{\text {solid }} \times \Delta T_{\text {solid }}}$
Thermometer
Cork stopper
Nested
Styrofoam
cups
(insulation)
Water
(surroundings)
Sample
(system)

This device measures the heat transferred at constant pressure $\left(q_{P}\right)$.

Determining the Specific Heat Capacity of a Solid

PROBLEM: A 22.05 g solid is heated in a test-tube to $100.00^{\circ} \mathrm{C}$ and added to 50.00 g of water in a coffee-cup calorimeter. The water temperature changes from $25.10^{\circ} \mathrm{C}$ to $28.49^{\circ} \mathrm{C}$. Find the specific heat capacity of the solid. $\mathrm{C}_{\mathrm{H}_{2} \mathrm{O}}=4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$

PLAN: Since the water and the solid are in contact, heat is transferred from the solid to the water until they reach the same $T_{\text {final }}$. In addition, the heat given out by the solid $\left(-q_{\text {solid }}\right)$ is equal to the heat absorbed by the water ($q_{\text {water }}$).

SOLUTION:

$$
\begin{aligned}
& \Delta T_{\text {water }}=T_{\text {final }}-T_{\text {initial }}=\left(28.49^{\circ} \mathrm{C}-25.10^{\circ} \mathrm{C}\right)=3.39^{\circ} \mathrm{C}=3.39 \mathrm{~K} \\
& \Delta T_{\text {solid }}=T_{\text {final }}-T_{\text {initial }}=\left(28.49^{\circ} \mathrm{C}-100.00^{\circ} \mathrm{C}\right)=-71.51^{\circ} \mathrm{C}=-71.51 \mathrm{~K}
\end{aligned}
$$

Sample Problem 6.4

$$
\begin{aligned}
C_{\text {solid }} & =\frac{C_{\mathrm{H}_{2} \mathrm{O}} \times \text { mass }_{\mathrm{H}_{2} \mathrm{O}} \times \Delta T_{\mathrm{H}_{2} \mathrm{O}}}{\text { mass }_{\text {solid }} \times \Delta T_{\text {solid }}} \\
& =\frac{4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} \times 50.00 \mathrm{~g} \times 3.39 \mathrm{~K}}{2205 \mathrm{a} \times(-7151 \mathrm{~K})}=\mathbf{0 . 4 5 0 \mathrm { J } / \mathrm { g } \cdot \mathrm { K }}
\end{aligned}
$$

Determining the Enthalpy Change of an Aqueous Reaction

PROBLEM: 50.0 mL of 0.500 MNaOH is placed in a coffee-cup calorimeter at $25.00^{\circ} \mathrm{C}$ and 25.0 mL of 0.500 MHCl is carefully added, also at $25.00^{\circ} \mathrm{C}$. After stirring, the final temperature is $27.21^{\circ} \mathrm{C}$. Calculate $q_{\text {soln }}$ (in J) and the change in enthalpy, ΔH, (in $\mathrm{kJ} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$ formed).

Assume that the total volume is the sum of the individual volumes, that $d=1.00 \mathrm{~g} / \mathrm{mL}$ and $c=4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$

PLAN: Heat flows from the reaction (the system) to its surroundings (the solution). Since $-q_{\mathrm{rxn}}=q_{\mathrm{soln}}$, we can find the heat of the reaction by calculating the heat absorbed by the solution.

SOLUTION:

(a) To find $q_{\text {soln }}$:

Total mass (g) of the solution $=(25.0 \mathrm{~mL}+50.0 \mathrm{~mL}) \times 1.00 \mathrm{~g} / \mathrm{mL}=75.0 \mathrm{~g}$

$$
\begin{aligned}
& \Delta T_{\text {soln }}=27.21^{\circ} \mathrm{C}-25.00^{\circ} \mathrm{C}=2.21^{\circ} \mathrm{C}=2.21 \mathrm{~K} \\
& q_{\text {soln }}=c_{\text {soln }} \times \text { mass }_{\text {soln }} \times \Delta T_{\text {soln }}=(4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})(75.0 \mathrm{~g})(2.21 \mathrm{~K})=693 \mathrm{~J}
\end{aligned}
$$

(b) To find ΔH_{rxn} we first need a balanced equation:

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda
$$

Sample Problem 6.5

For HCl :
$25.0 \mathrm{~mL} \mathrm{HCl} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}} \times \frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{HCl}}=0.0125 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

For NaOH :

$50.0 \mathrm{~mL} \mathrm{NaOH} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}} \times \frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.0250 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

HCl is limiting, and the amount of $\mathrm{H}_{2} \mathrm{O}$ formed is 0.0125 mol.

$$
\begin{gathered}
q_{\mathrm{soln}=}=q_{\mathrm{rxn}} \\
\Delta H_{\mathrm{rxn}}=\frac{q_{\mathrm{rxn}}}{\mathrm{~mol} \mathrm{H} \mathrm{H}}=\frac{-693 \mathrm{~J}}{0.0125 \mathrm{~mol}} \times \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}=-55.4 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

A bomb calorimeter.

Device used to measure the heat of combustion reaction

This device measures the heat released at constant volume (q_{v}).

Calculating the Heat of a Combustion Reaction

PROBLEM: A manufacturer claims that its new dietetic dessert has "fewer than 10 Calories per serving." To test the claim, a chemist at the Department of Consumer Affairs places one serving in a bomb calorimeter and burns it in O_{2}. The initial temperature is $21.862^{\circ} \mathrm{C}$ and the temperature rises to $26.799^{\circ} \mathrm{C}$. If the heat capacity of the calorimeter is $8.151 \mathrm{~kJ} / \mathrm{K}$, is the manufacturer's claim correct?

PLAN: When the dessert (system) burns, the heat released is absorbed by the calorimeter:
$-q_{\text {system }}=q_{\text {calorimeter }}$
To verify the energy provided by the dessert, we calculate
$q_{\text {calorimeter }}$.

Sample Problem 6.6

SOLUTION:

$$
\begin{aligned}
& \Delta T_{\text {calorimeter }}=T_{\text {final }}-T_{\text {initial }} \\
&=26.799^{\circ} \mathrm{C}-21.862^{\circ} \mathrm{C}=4.937^{\circ} \mathrm{C}=4.937 \mathrm{~K} \\
& q_{\text {calorimeter }}=\text { heat capacity } \times \Delta T=8.151 \mathrm{~kJ} / \mathrm{K} \times 4.937 \mathrm{~K}=40.24 \mathrm{~kJ} \\
& 40.24 \mathrm{~kJ} \times \frac{\mathrm{kcal}}{}=9.63 \text { kcal or Calories }
\end{aligned}
$$

The manufacturer's claim is true, since the heat produced is less than 10 Calories.

Stoichiometry of Thermochemical Equations

- A thermochemical equation is a balanced equation that includes $\Delta H_{\text {rxn }}$.
- The sign of ΔH indicates whether the reaction is exothermic or endothermic.
- The magnitude of ΔH is proportional to the amount of substance.
- The value of ΔH can be used in a calculation in the same way as a mole ratio.

Figure 6.11
The relationship between amount (mol) of substance and the energy (kJ) transferred as heat during a reaction.

Sample Problem 6.7

Using the Enthalpy Change of a Reaction (ΔH) to Find Amounts of Substance
PROBLEM: The major source of aluminum in the world is bauxite (mostly aluminum oxide). Its thermal decomposition can be represented by the equation

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(s) \longrightarrow 2 \mathrm{Al}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \Delta H_{\mathrm{rxn}}=1676 \mathrm{~kJ}
$$

If aluminum is produced this way, how many grams of aluminum can form when $1.000 \times 10^{3} \mathrm{~kJ}$ of heat is transferred?

PLAN: From the balanced equation and ΔH, we see that 2 mol of Al is formed when 1676 kJ of heat is absorbed.

> heat (kJ)
$1676 \mathrm{~kJ}=2 \mathrm{~mol}$ AI
mol of AI
mass (g) of AI

Sample Problem 6.7

SOLUTION:

$1.000 \times 10^{3} \mathrm{~kJ} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{1676 \mathrm{~kJ}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=\mathbf{= 3 2 . 2 0 \mathrm { g } \mathrm { AI }}$

Hess' Law

Hess's law states that the enthalpy change of an overall process is the sum of the enthalpy changes of its individual steps.

$$
\Delta H_{\text {overall }}=\Delta H_{1}+\Delta H_{2}+\ldots \ldots \ldots \ldots+\Delta H_{n}
$$

ΔH for an overall reaction can be calculated if the ΔH values for the individual steps are known.

Calculating $\Delta \boldsymbol{H}$ for an overall process

- Identify the target equation, the step whose ΔH is unknown.
- Note the amount of each reactant and product.
- Manipulate each equation with known ΔH values so that the target amount of each substance is on the correct side of the equation.
- Change the sign of ΔH when you reverse an equation.
- Multiply amount (mol) and ΔH by the same factor.
- Add the manipulated equations and their resulting ΔH values to get the target equation and its ΔH.
- All substances except those in the target equation must cancel.

Using Hess's Law to Calculate an Unknown ΔH

PROBLEM: Two gaseous pollutants that form in auto exhausts are CO and NO. An environmental chemist is studying ways to convert them to less harmful gases through the following reaction:

$$
\mathrm{CO}(g)+\mathrm{NO}(g) \rightarrow \mathrm{CO}_{2}(g)+1 / 2 \mathrm{~N}_{2}(g) \Delta H=?
$$

Given the following information, calculate the unknown ΔH :

$$
\text { Equation A: } \mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \Delta H_{\mathrm{A}}=-283.0 \mathrm{~kJ}
$$

Equation $\mathrm{B}: \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}(g) \Delta H_{\mathrm{B}}=180.6 \mathrm{~kJ}$
PLAN: Manipulate Equations A and/or B and their ΔH values to get to the target equation and its ΔH. All substances except those in the target equation must cancel.

Sample Problem 6.8

SOLUTION:

Multiply Equation B by $1 / 2$ and reverse it:

$$
\mathrm{NO}(g) \longrightarrow 1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) ; \Delta H=-90.3 \mathrm{~kJ}
$$

Add the manipulated equations together:
Equation A: $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)$ $\Delta H=-283.0 \mathrm{~kJ}$
$1 / 2$ Equation B: $\quad \mathrm{NO}(g) \quad \rightarrow 1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \quad \Delta H=-90.3 \mathrm{~kJ}$ (reversed)

$$
\mathrm{CO}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{CO}_{2}(g)+1 / 2 \mathrm{~N}_{2}(g)
$$

$$
\Delta H_{\mathrm{rxn}}=-373.3 \mathrm{~kJ}
$$

Table 6.3 Selected Standard Enthalpies of Formation at $25^{\circ} \mathrm{C}$ (298K)

Formula Δ	$\Delta \mathscr{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$	Formula	$\Delta \mathscr{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$	Formula Δ	$\Delta H_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
Calcium		$\mathrm{Cl}_{2}(\mathrm{~g})$		Silver	
$\mathrm{Ca}(\mathrm{s})$	0		-92.3	$\mathrm{Ag}(\mathrm{s})$	0
$\mathrm{CaO}(s)$	-635.1	$\mathrm{HCl}(\mathrm{g})$		$\mathrm{AgCl}(s)$	-127.0
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1206.9	Hydrogen			
Carbon		$\mathrm{H}(\mathrm{g})$	218	Sodium	
C(graphite) 0		$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{Na}(\mathrm{s})$	0
C(diamond) 1.9		Nitrogen		$\mathrm{Na}(\mathrm{g})$	107.8
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{N}_{2}(\mathrm{~g})$	0	$\mathrm{NaCl}(\mathrm{s})$	s) -411.1
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-45.9	Sulfur	
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.9	NO (g)	90.3	S_{8} (rhom	mbic) 0
$\mathrm{CH}_{3} \mathrm{OH}()$	-238.6	Oxygen		S_{8} (monoclinic) 0.3	
$\mathrm{HCN}(\mathrm{g})$	135	$\mathrm{O}_{2}(\mathrm{~g})$	0	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.8
$\mathrm{CS}_{\mathrm{s}}($ ($)$	87.9	$\mathrm{O}_{3}(\mathrm{~g})$	143	$\mathrm{SO}_{3}(\mathrm{~g})$	- 396.0
Chlorine		$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8		
$\mathrm{Cl}(\mathrm{g})$	121.0	$\mathrm{H}_{2} \mathrm{O}(\mathrm{n}$ UPLOADED B	$\begin{gathered} -285.8 \\ \text { mad Al-Jundi } \end{gathered}$		

PROBLEM: Write balanced equations for the formation of 1 mol of the following compounds from their elements in their standard states and include ΔH_{f}.
(a) Silver chloride, AgCl , a solid at standard conditions.
(b) Calcium carbonate, CaCO_{3}, a solid at standard conditions.
(c) Hydrogen cyanide, HCN, a gas at standard conditions.

PLAN: Write the elements as reactants and 1 mol of the compound as the product formed. Make sure all substances are in their standard states. Balance the equations and find the value of ΔH_{f} in Table 6.3 or Appendix B.

Sample Problem 6.9

SOLUTION:

(a) Silver chloride, AgCl , a solid at standard conditions.

$$
\mathrm{Ag}(s)+1 / 2 \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{AgCl}(s) \quad \Delta \mathscr{H}_{\mathrm{f}}=-127.0 \mathrm{~kJ}
$$

(b) Calcium carbonate, CaCO_{3}, a solid at standard conditions.
$\mathrm{Ca}(\mathrm{s})+\mathrm{C}($ graphite $)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(s) \quad \Delta \mathscr{f}_{\mathrm{f}}=-1206.9 \mathrm{~kJ}$
(c) Hydrogen cyanide, HCN, a gas at standard conditions.
$1 / 2 \mathrm{H}_{2}(g)+\mathrm{C}($ graphite $)+1 / 2 \mathrm{~N}_{2}(g) \longrightarrow \mathrm{HCN}(g) \quad \Delta \boldsymbol{H}_{\mathrm{f}}=135 \mathrm{~kJ}$

UPLOADED BY AHMAD T JUNDI
Figure 6.10
The two-step process for determining $\Delta \boldsymbol{H}_{\mathrm{rxn}}$ from $\Delta H_{\mathrm{f}}^{\circ}$ values.

PROBLEM: Nitric acid, whose worldwide annual production is about 8 billion kilograms, is used to make many products, including fertilizer, dyes, and explosives. The first step in the industrial production process is the oxidation of ammonia:

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

Calculate $\Delta \mathscr{H}_{\text {rxn }}$ from ΔH^{ρ} falues.
PLAN: Use the $\Delta \mathscr{H}_{\mathrm{f}}$ values from Table 6.3 or Appendix B and apply the equation
$\Delta H_{\mathrm{rxn}}=\Sigma m \Delta H_{\mathrm{f}}$ (products) $-\Sigma n \Delta H_{\mathrm{f}}$ (reactants)

SOLUTION:

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}=\Sigma m \Delta H_{\mathrm{f}}(\text { products })-\Sigma n \Delta H_{\mathrm{f}}(\text { reactants }) \\
\Delta H_{\mathrm{rxn}}=\left[4 \left(\Delta H_{\mathrm{f}} \text { of } \mathrm{NO}(g)+6\left(\Delta H H_{\mathrm{f}} \text { of } \mathrm{H}_{2} \mathrm{O}(g)\right]\right.\right. \\
-\left[4 \left(\Delta H \text { of } \mathrm{NH}_{3}(g)+5\left(\Delta H \text { of } \mathrm{O}_{2}(g)\right]\right.\right. \\
=(4 \mathrm{~mol})(90.3 \mathrm{~kJ} / \mathrm{mol})+(6 \mathrm{~mol})(-241.8 \mathrm{~kJ} / \mathrm{mol})- \\
{[(4 \mathrm{~mol})(-45.9 \mathrm{~kJ} / \mathrm{mol})+(5 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]} \\
=-906 \mathrm{~kJ} \\
\Delta H_{\mathrm{rxn}}=-906 \mathrm{~kJ}
\end{gathered}
$$

Figure 6.11 The trapping of heat by the atmosphere.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 07

Lecture Outline

See separate Image PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.

Chapter 7

Quantum Theory and Atomic Structure

Quantum Theory and Atomic Structure

7.1 The Nature of Light
7.2 Atomic Spectra
7.3 The Wave-Particle Duality of Matter and Energy
7.4 The Quantum-Mechanical Model of the Atom

The Wave Nature of Light

Visible light is a type of electromagnetic radiation.
The wave properties of electromagnetic radiation are described by three variables:

- frequency (v), cycles per second
- wavelength (λ), the distance a wave travels in one cycle
- amplitude, the height of a wave crest or depth of a trough.

The speed of light is a constant: $c=\nu \times \lambda$
$=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in a vacuum

Figure 7.1 The reciprocal relationship of frequency and wavelength.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
Wavelength $=$ distance per cycle
$\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}=4 \lambda_{\mathrm{C}}$
Wavelength

B

Frequency $=$ cycles per second
$v_{\mathrm{A}}=\frac{1}{2} \nu_{\mathrm{B}}=\frac{1}{4} \nu_{\mathrm{C}}$
UPLODED BY Anmad JundI

Figure 7.2 Differing amplitude (brightness, or intensity) of a wave.

UPLODED BY Ahmad Jundi

Figure 7.3 Regions of the electromagnetic spectrum.

Light of single wavelength is called monochromatic (one color) Whereas light of many wavelength is polychromatic.

Sample Problem 7.1

PROBLEM: A dental hygienist uses x-rays $(\lambda=1.00 \AA)$ to take a series of dental radiographs while the patient listens to a radio station ($\lambda=325 \mathrm{~cm}$) and looks out the window at the blue sky ($\lambda=$ 473 nm). What is the frequency (in s${ }^{-1}$) of the electromagnetic radiation from each source? (Assume that the radiation travels at the speed of light, $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)

PLAN: Use the equation $c=v \lambda$ to convert wavelength to frequency. Wavelengths need to be in meters because c has units of m / s.
wavelength in units given
use conversion factors

$$
1 \AA=10^{-10} \mathrm{~m}
$$

wavelength in m

$$
v=\frac{c}{\lambda}
$$

Sample Problem 7.1

SOLUTION:

For the x-rays: $\quad \lambda=1.00 \AA \times \frac{10^{-10} \mathrm{~m}}{1 \AA}=1.00 \times 10^{-10} \mathrm{~m}$

$$
v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.00 \times 10^{-10} \mathrm{~m}} \quad=3.00 \times 10^{18} \mathbf{s}^{-1}
$$

For the radio signal: $\quad v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{325 \mathrm{~cm} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}}$ $=9.23 \times 10^{7} \mathrm{~s}^{-1}$

For the blue sky: $\quad v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{473 \mathrm{~nm} \times \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~cm}}}$

$$
=6.34 \times 10^{14} \mathrm{~s}^{-1}
$$

Cplezssicalatistiuction between energy and matter

 Different behaviors of waves of energy and particles of matter 1- Refraction and DispersionWhen the light wave pass from one media into another the speed of the wave change.
White light separates (disperses) into its components colors when it pass through the prism

2- Diffyaction

When wave strike strike the edge of an object it bend around it (diffraction). When of light pass through two adjacent slits the nearby emerging circular waves interact through the process of interference.

- If the crest of waves coincide in phase (the interference is constructive).
- If the crest coincide with troughs out of phase (the interference is destructive).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy and frequency

A solid object emits visible light when it is heated to about 1000 K . This is called blackbody radiation.

The color (and the intensity) of the light changes as the temperature changes. Color is related to wavelength and frequency, while temperature is related to energy.

Energy is therefore related to frequency and wavelength:

$$
\begin{aligned}
& \boldsymbol{E =}=\boldsymbol{n} \boldsymbol{h} \boldsymbol{v} \quad n \text { is a positive integer (quantum number) } \\
& h \text { is Planck's constant } \\
& \text { uplofrequeancy }
\end{aligned}
$$

The Quantum Theory of Energy

Any object (including atoms) can emit or absorb only certain quantities of energy.

Energy is quantized, it occurs in fixed quantities, rather than being continuous. Each fixed quantity of energy is called a quantum.

An atom changes its energy state by emitting or absorbing one or more quanta of energy.
$\Delta E=n h v$ where n can only be a whole number.

UPiggife

Einstine proposed that the light itself is particulate quantized in to tiny "bundles" of energy (photons).
Each atom change its energy one its absorb or emit one photon(one particles of light) whose energy related to frequency not to its amplitude.
$\mathrm{E}_{\text {photon }}=\boldsymbol{h} \boldsymbol{\nu}=\boldsymbol{\Delta} \mathrm{E}$

Two features of the photoelectric effect:
1- Threshold frequency: Intensity is related to number of photon but not to energy of each, a photon of certain minimum energy must be absorb to free an electron from the surface, since energy depends on frequency the theory predicts a threshold frequency.
2- Absence of the time lag: the current is week in dim light because fewer photons of enough energy can free fewer electrons per unit time.

Incoming light	Evacuated
strikes the	tube

Sample Problem 7.2

Calculating the Energy of Radiation from Its Wavelength

PROBLEM: A cook uses a microwave oven to heat a meal. The wavelength of the radiation is 1.20 cm . What is the energy of one photon of this microwave radiation?

PLAN: We know λ in cm , so we convert to m and find the frequency using the speed of light. We then find the energy of one photon using $E=h v$.

SOLUTION:

$$
E=h_{v}=\frac{h c}{\lambda}=\frac{\left.\left(6.626 \times 10^{-34}\right) \mathrm{J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(1.20 \mathrm{~cm})\left(\frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}\right)}=1.66 \times 10^{-23} \mathrm{~J}
$$

Figure 7.7A The line spectrum of hydrogen.

Figure 7.7B \quad The line spectra of Hg and Sr .

UPLOADED BY AHMAD T JUNDI
Figure 7.8 Three series of spectral lines of atomic hydrogen.

Rydberg equation $\frac{1}{\lambda}=R\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right)$

R is the Rydberg constant $=1.096776 \times 10^{7} \mathrm{~m}^{-1}$

for the visible series, $n_{1}=2$ and $n_{2}=3,4,5, \ldots$

The Bohr Model of the Hydrogen Atom

Bohr's atomic model postulated the following:

- The H atom has only certain energy levels, which Bohr called stationary states.
- Each state is associated with a fixed circular orbit of the electron around the nucleus.
- The higher the energy level, the farther the orbit is from the nucleus.
- When the H electron is in the first orbit, the atom is in its lowest energy state, called the ground state.
- The atom does not radiate energy while in one of its stationary states.
- The atom changes to another stationary state only by absorbing or emitting a photon.
- The energy of the photon ($h v$) equals the difference between the energies of the two energy states.
- When the E electron is in any orbit higher than $n=1$, the atom is in an excited state.

Figure 7.9
A quantum "staircase" as an analogy for atomic energy levels.

Figure 7.10 The Bohr explanation of three series of spectral lines emitted by the H atom.

UPLQADED BYAHMAD T UUNDI
A tabletop analogy for the H atom's energy.

Sample Problem 7.3

Determining ΔE and λ of an Electron Transition

PROBLEM: A hydrogen atom absorbs a photon of UV light (see Figure 7.10) and its electron enters the $n=4$ energy level. Calculate (a) the change in energy of the atom and (b) the wavelength (in nm) of the photon.

PLAN: (a) The H atom absorbs energy, so $E_{\text {final }}>E_{\text {initial }}$. We are given $n_{\text {final }}=4$, and Figure 7.10 shows that $n_{\text {initial }}=1$ because a UV photon is absorbed. We apply Equation 7.4 to find ΔE.
(b) Once we know ΔE, we find frequency and wavelength.

Sample Problem 7.3

SOLUTION:
(a) $\Delta E=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{\left.n_{\text {final }}^{2}-\frac{1}{n_{\text {initial }}^{2}}\right)=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{4^{2}}-\frac{1}{1^{2}}\right) .}\right.$
$=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{16}-\frac{1}{1}\right)=2.04 \times 10^{-18} \mathrm{~J}$
(b) $\lambda=\frac{h c}{\Delta E}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.04 \times 10^{-18} \mathrm{~J}}=9.74 \times 10^{-8} \mathrm{~m}$

$$
9.74 \times 10^{-8} \mathrm{~m} \times \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}=97.4 \mathrm{~nm}
$$

Figure 7.11 Measuring chlorophyll a concentration in leaf extract.

Two types of spectra

1- Excitation spectrum

2- Emission spectrupmoded By Ahmad Jundi

The Wave-Particle Duality of Matter and Energy

Matter and Energy are alternate forms of the same entity.

$$
E=m c^{2}
$$

All matter exhibits properties of both particles and waves. Electrons have wave-like motion and therefore have only certain allowable frequencies and energies.

Matter behaves as though it moves in a wave, and the de Broglie wavelength for any particle is given by:

$$
\lambda=\frac{h}{m u} \quad \begin{aligned}
& m=\text { mass } \\
& u=\text { speed in } \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Figuare

Table 7.1 The de Broglie Wavelengths of Several Objects

Substance	Mass (\mathbf{g})	Speed $(\mathrm{m} / \mathbf{s})$	$\lambda(\mathrm{m})$
slow electron	9×10^{-28}	1.0	7×10^{-4}
fast electron	9×10^{-28}	5.9×10^{6}	1×10^{-1}
alpha particle	6.6×10^{-24}	1.5×10^{7}	7×10^{-1}
one-gram mass	1.0	0.01	7×10^{-29}
baseball	142	25.0	2×10^{-34}
Earth	6.0×10^{27}	3.0×10^{4}	4×10^{-63}

Sample Problem 7.4 Calculating the de Broglie Wavelength of an Electron

PROBLEM: Find the de Broglie wavelength of an electron with a speed of $1.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (electron mass $=9.11 \times 10^{-31} \mathrm{~kg}$; $\left.h=6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)$.

PLAN: We know the speed and mass of the electron, so we substitute these into Equation 7.5 to find λ.

SOLUTION: $\lambda=\frac{h}{m u}$

$$
\lambda=\frac{6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{9.11 \times 10^{-31} \mathrm{~kg} \times 1.00 \times 10^{6} \mathrm{~m} / \mathrm{s}}
$$

$$
=7.27 \times 10^{-10} \mathrm{~m}
$$

Figure $9.13{ }^{\text {BY }}$ Didfraction patterns of aluminum with x-rays and electrons.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x-ray diffraction of aluminum foil

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

electron diffraction of aluminum foil

CLASSICAL THEORY

Matter particulate, massive	Energy continuous, wavelike

Figure 7.14
Major observations and theories leading from classical theory to quantum theory

| Since matter is discontinuous and particulate,
 perhaps energy is discontinuous and particulate. |
| :--- | :--- |
| Theory |
| Observation |
| Blackbody radiation \longrightarrow Planck:Energy is quantized; only certain values
 allowed |
| Photoelectric effect \longrightarrow Einstein: Light has particulate behavior (photons) |
| Atomic line spectra \longrightarrow Bohr:Energy of atoms is quantized; photon
 emitted when electron changes orbit. |

Since energy is wavelike, perhaps matter is wavelike.	
Observation Davisson/Germer: Electron beam is diffracted by metal crystal	Theory deBroglie: All matter travels in waves; energy of atom is quantized due to wave motion of electrons
Since matter has mass, perhaps energy has mass	
Observation	Theory
Compton: Photon's wavelength increases (momentum decreases) after colliding with electron	Einstein/deBroglie: Mass and energy are equivalent; particles have wavelength and photons have momentum.

QUANTUM THEORY

Energy and Matter

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle states that it is not possible to know both the position and momentum of a moving particle at the same time.

$$
\Delta x \cdot m \Delta u \geq \frac{h}{4 \pi} \quad \begin{aligned}
& x=\text { position } \\
& u=\text { speed }
\end{aligned}
$$

The more accurately we know the speed, the less accurately we know the position, and vice versa.

The Quantum-Mechanical Model of the Atom

The matter-wave of the electron occupies the space near the nucleus and is continuously influenced by it.

The Schrödinger wave equation allows us to solve for the energy states associated with a particular atomic orbital.

The square of the wave function gives the probability density, a measure of the probability of finding an electron of a particular energy in a particular region of the atom.

Figure 7.15
Electron probability density in the ground-state H atom.

Quantum Numbers and Atomic Orbitals

An atomic orbital is specified by three quantum numbers.
The principal quantum number (\boldsymbol{n}) is a positive integer. The value of n indicates the relative size of the orbital and therefore its relative distance from the nucleus.

The angular momentum quantum number (l) is an integer from 0 to ($n-1$).
The value of $/$ indicates the shape of the orbital.
The magnetic quantum number $\left(m_{l}\right)$ is an integer with values from -1 to +1
The value of m_{l} indicates the spatial orientation of the orbital.

Table 7.2 The Hierarchy of Quantum Numbers for Atomic Orbitals

Name, Symbol
(Property) Allowed Values
Quantum Numbers
Principal, $n \quad$ Positive integer
(size, energy)
$(1,2,3, \ldots)$

Angular
momentum, $I \quad 0$ to $n-1$ (shape)

Magnetic, m_{I} (orientation) $\quad-I, \ldots, 0, \ldots,+I$

Sample Problem 7.5

Determining Quantum Numbers for an Energy Level

PROBLEM: What values of the angular momentum (Δ) and magnetic $\left(m_{l}\right)$ quantum numbers are allowed for a principal quantum number (n) of 3 ? How many orbitals are allowed for $n=3$?

PLAN: Values of I are determined from the value for n, since I can take values from 0 to ($n-1$). The values of m_{l} then follow from the values of l.

SOLUTION: For $n=3$, allowed values of l are $=0,1$, and 2

$$
\text { For } I=0 \quad m_{l}=0 \quad \text { For } I=1 m_{l}=-1,0, \text { or }+1
$$

$$
\text { For } I=2 m_{l}=-2,-1,0,+1 \text {, or }+2
$$

There are $9 m_{l}$ values and therefore 9 orbitals with $n=3$.

Sample Problem 7.6

Determining Sublevel Names and Orbital Quantum Numbers

PROBLEM: Give the name, magnetic quantum numbers, and number of orbitals for each sublevel with the following quantum numbers:
(a) $n=3, l=2$
(b) $n=2,1=0$
(c) $n=5, l=1$
(d) $n=4, l=3$

PLAN: Combine the n value and I designation to name the sublevel. Knowing 1 , we can find m_{l} and the number of orbitals.

SOLUTION:
$n \quad l$ sublevel name possible m_{l} values \# of orbitals

(a)	3	2	$3 d$	$-2,-1,0,1,2$	5
(b)	2	0	$2 s$	0	1
(c)	5	1	$5 p$	$-1,0,1$	3
(d)	4	3	$4 f$	$-3,-2,-1,0,1,2,3$	7

Sample Problem 7.7

Identifying Incorrect Quantum Numbers

PROBLEM: What is wrong with each of the following quantum numbers designations and/or sublevel names?

	n	l	m_{l}	Name
(a)	1	1	0	$1 p$
(b)	4	3	+1	$4 d$
(c)	3	1	-2	$3 p$

SOLUTION:

(a) A sublevel with $n=1$ can only have $l=0$, not $l=1$. The only possible sublevel name is 1 s .
(b) A sublevel with $l=3$ is an f sublevel, to a d sublevel. The name should be $4 f$.
(c) A sublevel with $l=1$ can only have m_{l} values of $-1,0$, or +1 , not -2 .

UPLOADED BY AHMAD T JUNDI
Figure $7.16 \quad$ The $1 s, 2 s$, and $3 s$ orbitals.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPIGADED $7.17{ }^{\text {A }}$ MAD T The $2 p$ orbitals.

Figure 7.18 The $3 d$ orbitals.

B Cross section of electron cloud depiction

D Stylized probability contour

E

UPLOADED BY AHMAD T JUNDI

Figure 7.18

F

G

H

I The five \boldsymbol{d} orbitals

Figure 7.19 The $4 f_{\text {xyz }}$ orbital, one of the seven $4 f$ orbitals.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 7.20 Energy levels of the H atom.

Chapter 08

Lecture Outline

See separate Image PowerPointslides for all figures and tables pre-inserted into PowerPoint without notes.

Chapter 8

Electron Configuration and Chemical Periodicity

Electron Configuration and Chemical Periodicity

8.1 Characteristics of Many-Electron Atoms
8.2 The Quantum-Mechanical Model and the Periodic Table
8.3 Trends in Three Atomic Properties
8.4 Atomic Properties and Chemical Reactivity

Figure 8.1 The effect of electron spin.

Table 8.1 Summary of Quantum Numbers of Electrons in Atoms

Name	Symbol	Permitted Values	Property
principal	n	positive integers $(1,2,3, \ldots)$	orbital energy (size)
angular	l	integers from 0 to $n-1$	orbital shape (The $/$ values momentum
			$0,1,2$, and 3 correspond to respectively.)
magnetic	m_{l}	integers from $-l$ to 0 to +1	orbital orientation
spin	m_{S}	$+1 / 2$ or $-1 / 2$	direction of e- spin

Quantum Numbers and The Exclusion Principle

Each electron in any atom is described completely by a set of four quantum numbers.
The first three quantum numbers describe the orbital, while the fourth quantum number describes electron spin.

Pauli's exclusion principle states that no two electrons in the same atom can have the same four quantum numbers.

An atomic orbital can hold a maximum of two electrons and they must have opposing spins.

Factors Affecting Atomic Orbital Energies

- The energies of atomic orbitals are affected by
- nuclear charge (Z) and
- shielding by other electrons.
- A higher nuclear charge increases nucleus-electron interactions and lowers sublevel energy.
- Shielding by other electrons reduces the full nuclear charge to an effective nuclear charge $\left(Z_{\text {eff }}\right)$.
- $Z_{\text {eff }}$ is the nuclear charge an electron actually experiences.
- Orbital shape also affects sublevel energy.

Shielding and Orbital Energy

- Electrons in the same energy level shield each other to some extent.
- Electrons in innerenergy levels shield the outer electrons very effectively.
- The farther from the nucleus an electron is, the lower the $Z_{\text {eff }}$ for that particular electron.

Figure 8.2 Penetration and sublevel energy.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Orbital shape causes electrons in some orbitals to "penetrate" close to the nucleus.

Penetration increases nuclear attraction and decreases shielding.

Splitting of Levels into Sublevels

Each energy level is split into sublevels of differing energy. Splitting is caused by penetration and its effect on shielding.

For a given n value, a lower I value indicates a lower energy sublevel.

Order of sublevel energies: $s<p<d<f$

Figure 8.3

Order for filling energy sublevels with electrons.

In general, energies of sublevels increase as n increases ($1<2<3$, etc.) and as l increases $(s<p<d<f)$.

As n increases, some sublevels overlap.

Electron Configurations and Orbital Diagrams

Electron configuration is indicated by a shorthand notation:

Orbital diagrams make use of a box, circle, or line for each orbital in the energy level. An arrow is used to represent an electron and its spin.

A vertical orbital diagram for the Li ground state.

Building Orbital Diagrams

The aufbau principle is applied - electrons are always placed in the lowest energy sublevel available.

$$
\mathrm{H}(Z=1) 1 s^{1} \frac{\uparrow}{1 s}
$$

The exclusion principle states that each orbital may contain a maximum of 2 electrons, which must have opposite spins.

Building Orbital Diagrams

Hund's rule specifies that when orbitals of equal energy are available, the lowest energy electron configuration has the maximum number of unpaired electrons with parallel spins.

$$
\mathrm{N}(Z=7) 1 s^{2} 2 s^{2} 2 \mathrm{p}^{3}
$$

Sample Problem 8.1

Determining Quantum Numbers from Orbital Diagrams

PROBLEM: Write a set of quantum numbers for the third electron and a set for the eighth electron of the F atom.

PLAN: Identify the electron of interest and note its level (n), sublevel, ($)$, orbital $\left(m_{l}\right)$ and spin $\left(m_{s}\right)$. Count the electrons in the order in which they are placed in the diagram.

SOLUTION:
$\mathrm{F}(Z=9) 1 s^{2} 2 s^{2} 2 p^{5}$

$1 s$

$2 s$

For the $3^{\text {rd }}$ electron: $\boldsymbol{n}=2, I=0, m_{l}=0, m_{s}=+1 / 2$

For the $8^{\text {th }}$ electron: $n=2, I=1, m_{I}=-1, m_{s}=-1 / 2$

Partial Orbital Diagrams and Condensed Configurations

A partial orbital diagram shows only the highest energy sublevels being filled.

$$
\mathrm{Al}(Z=13) 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}
$$

A condensed electron configuration has the element symbol of the previous noble gas in square brackets.

Al has the condensed configuration $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$

Table 8.2 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 3.

Atomic Number	Element	Partial Orbital Diagram (3s and 3p Sublevels Only)				Full Electron Configuration ${ }^{\dagger}$	Condensed Electron Configuration
	$3 s \quad 3 p$						
11	Na	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{1}$	$[\mathrm{Ne}] 3{ }^{1}$
12	Mg	$\uparrow \downarrow$				$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2}$	[Ne] $3 s^{2}$
13	Al	$\uparrow \downarrow$	\uparrow			$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{1}$	$[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
14	Si	$\uparrow \downarrow$	\uparrow	\uparrow		$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{2}$	[Ne$] 3 s^{2} 3 p^{2}$
15	P	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{3}$	[$\mathrm{Ne} \mathrm{]} 3 s^{2} 3 p^{3}$
16	S	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{4}$	[Ne$] 3 s^{2} 3 p^{4}$
17	Cl	$\uparrow \downarrow$	\uparrow		\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{5}$	[Ne] $3 s^{2} 3 p^{5}$
18	Ar	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{6}$	[Ne$] 3 s^{2} 3 p^{6}$

*Colored type indicates the sublevel to which the last electron is added.
†The full configuration is not usually written with square brackets; they are included here to show how the $[\mathrm{Ne}]$ designation arises.

UPLODED BY Ahmad Jundi

Electron Configuration and Group

Elements in the same group of the periodic table have the same outer electron configuration.

Elements in the same group of the periodic table exhibit similar chemical behavior.

Similar outer electron configurations correlate with similar chemical behavior.

Figure 8.4 Condensed electron configurations in the first three periods.

Table 8.3 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 4.

Atomic Number	Element	Partial Orbital Diagram (4s, 3d, and $4 p$ Sublevels Only)									Full Electron Configuration	Condensed Electron Configuration
		$4 s$			$3 d$				$4 p$			
19	K	\uparrow									$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	$[\operatorname{Ar}] 4{ }^{1}$
20	Ca	$\uparrow \downarrow$									$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	[Ar] $4 s^{2}$
21	Sc	$\uparrow \downarrow$	\uparrow								$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$	[Ar] $4 s^{2} 3 d^{1}$
22	Ti	$\uparrow \downarrow$	\uparrow	\uparrow							$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$	[Ar] $4 s^{2} 3 d^{2}$
23	V	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow						$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$	[Ar] $4 s^{2} 3 d^{3}$
24	Cr	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	¢				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$	[Ar] $4 s^{1} 3 d^{5}$
25	Mn	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$	[Ar] $4 s^{2} 3 d^{5}$
26	Fe	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$	[Ar] $4 s^{2} 3 d^{6}$
27	Co	$\uparrow \downarrow$	$\uparrow \downarrow$	$\mid \uparrow \downarrow$	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$	[Ar] $4 s^{2} 3 d^{7}$

*Colored type indicates the sublevel to which the last electron is added.

UPLODED BY Ahmad Jundi

Table 8.3 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 4.

Atomic Number	Element	Partial Orbital Diagram ($4 s, 3 d$, and $4 p$ Sublevels Only)				Full Electron Configuration	Condensed Electron Configuration
28	Ni	$\uparrow \downarrow$				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$	[Ar] $4 s^{2} 3 d^{8}$
29	Cu	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$	[Ar] $4 s^{1} 3 d^{10}$
30	Zn	$\uparrow \downarrow$	$\uparrow \downarrow\|\uparrow \downarrow \uparrow \downarrow\| \uparrow \downarrow \mid \uparrow \downarrow$			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$	[Ar] $4 s^{2} 3 d^{10}$
31	Ga	$\uparrow \downarrow$		\uparrow		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{1}$
32	Ge	$\uparrow \downarrow$	$\uparrow \downarrow \downarrow$ \|			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{2}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{2}$
33	As	$\uparrow \downarrow$	¢ $\uparrow \downarrow \uparrow \downarrow\|\uparrow \downarrow\| \uparrow \downarrow \uparrow \downarrow$	\uparrow ¢ \uparrow	\uparrow	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{3}$
34	Se	$\uparrow \downarrow$	$\uparrow \downarrow \downarrow \downarrow \mid \uparrow \downarrow \uparrow \downarrow / \uparrow \downarrow$	$\uparrow \downarrow$ \uparrow	\uparrow	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{4}$
35	Br	$\uparrow \downarrow$	\| $\downarrow \downarrow / \uparrow \downarrow\|\uparrow \downarrow\| \uparrow \downarrow \mid \uparrow \downarrow$	¢ $\downarrow \uparrow \downarrow$	行	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{5}$
36	Kr	$\uparrow \downarrow$		¢ $\uparrow \uparrow \downarrow$	仡	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{6}$

*Colored type indicates the sublevel to which the last electron is added.

Figure $8.5{ }^{U P}{ }^{\circ}$ A periodic table of partial ground-state electron configurations.

		Inner Transition Elements (f block)													
6	*Lanthanides		$\begin{gathered} 59 \\ \mathrm{Pr} \\ 6 s^{2} 4 f^{3} \end{gathered}$		$\begin{gathered} 61 \\ \text { Pm } \\ 6 s^{2}{ }^{2} f^{5} \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 6 s^{2} 4 f^{6} \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ 6 s^{2}{ }^{2} f^{7} \end{gathered}$		$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 6 s^{2} 4 f^{9} \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 6 s^{2} 4 f^{\prime \prime} \end{gathered}$		$\begin{array}{\|c\|} \hline 68 \\ \mathrm{Er} \\ 6 s^{2} 4 f^{12} \end{array}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{6 s^{2} 4 f^{13}} \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 6 s^{2} 4 f^{\prime 4} \\ \hline \end{array}$	
7	**Actinides	$\begin{gathered} 90 \\ \text { Th } \\ 7 s^{2} 6 d^{2} \\ \hline \end{gathered}$	91 Pa						97 Bk $\mathrm{s}^{2} \mathrm{~A}$.	98 Cf $n^{2}{ }^{18}$	99 Es Sfun	100 Fm $i^{2} 5 f^{12}$	$\begin{gathered} 101 \\ \text { Md } \\ 7 s^{2} 5 f^{13} \end{gathered}$		

Figure 8.6 Orbital filling and the periodic table.

The order in which the orbitals are filled can be obtained directly from the periodic table.

Aid to memorizing sublevel filling order.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Categories of Electrons

Inner (core) electrons are those an atom has in common with the pervious noble gas and any completed transition series.

Outer electrons are those in the highest energy level (highest n value).

Valence electrons are those involved in forming compounds.
For main group elements, the valence electrons are the outer electrons.
For transition elements, the valence electrons include the outer electrons and any ($n-1$) delectrons.

Sample Problem 8.2

Determining Electron Configurations

PROBLEM: Using the periodic table on the inside cover of the text (not Figure 8.5 or Table 8.3), give the full and condensed electron configurations, partial orbital diagrams showing valence electrons only, and number of inner electrons for the following elements:
(a) potassium
(b) technetium
(c) lead
(K; $Z=19$)
(Tc; $Z=43$)
(Pb; $Z=82$)

PLAN: The atomic number gives the number of electrons, and the periodic table shows the order for filling orbitals. The partial orbital diagram includes all electrons added after the previous noble gas except those in filled inner sublevels.

Sample Problem 8.2

SOLUTION:

(a) For $\mathrm{K}(Z=19)$
full configuration
condensed configuration
[Ar] $4 s^{1}$
partial orbital diagram

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$

There are 18 inner electrons.

Sample Problem 8.2

SOLUTION:

(b) For $\mathrm{Tc}(Z=43)$
full configuration
condensed configuration
partial orbital diagram $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{6}$ $[\mathrm{Kr}] 5 s^{2} 4 a^{6}$

There are 36 inner electrons.

Sample Problem 8.2

SOLUTION:

(a) For $\mathrm{Pb}(Z=82)$
full configuration $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{4} 5 d^{10} 6 p^{2}$
condensed configuration $\quad[\mathrm{Xe}] 6 s^{2} 4 f^{4} 5 d^{10} 6 p^{2}$
partial orbital diagram

There are 78 inner electrons.

Treneãoss fin Atomic Size

Defining atomic size.

Distance between
nuclei

B. The covalent radius of chlorine.

C. Known covalent radii and distances between nuclei can be used to find unknown radii.

uploaded by amad tixends in Atomic Size

Atomic size varies within both groups and periods as a result of two opposing influences:
1- Atomic size increases as the principal quantum number n increases.
As n increases, the probability that the outer electrons will be farther from the nucleus increases.

2- Atomic size decreases as the effective nuclear charge $Z_{\text {eff }}$ increases.
As $Z_{\text {eff }}$ increases, the outer electrons are pulled closer to the nucleus.

For main group elements:

atomic size increases down a group in the periodic table and decreases across a period.

[^2]
Figure 8.8

Atomic radii of the main-group and transition elements.

UPLOADED BY AHMAD T JUNDI
Figure 8.9
Periodicity of atomic radius.

Sample Problem 8.3

Ranking Elements by Atomic Size

PROBLEM: Using only the periodic table (not Figure 8.8), rank each set of main-group elements in order of decreasing atomic size:
(a) $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Sr}$
(b) $\mathrm{K}, \mathrm{Ga}, \mathrm{Ca}$
(c) $\mathrm{Br}, \mathrm{Rb}, \mathrm{Kr}$
(d) $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Rb}$

PLAN: Locate each element on the periodic table. Main-group elements increase in size down a group and decrease in size across the period.

Sample Problem 8.3

SOLUTION:

(a) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}$
Ca, Mg, and Sr are in Group 2A. Size increases down the group.
(b) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ga}$
K, Ga, and Ca are all in Period 4. Size decreases across the period.
(c) $\mathrm{Rb}>\mathrm{Br}>\mathrm{Kr}$

Rb is the largest because it has one more energy level than the other elements. Kr is smaller than Br because Kr is further to the right in the same period.
(d) $\mathrm{Rb}>\mathrm{Sr}>\mathrm{Ca}$

Ca is the smallest because it has one fewer energy level. Sr is smaller than Rb because it is smaller to the right in the same period.

Trends in Ionization Energy

Ionization energy (IE) is the energy required for the complete removal of 1 mol of electrons from 1 mol of gaseous atoms or ions.

Atoms with a low IE tend to form cations. Atoms with a high IE tend to form anions (except the noble gases).

Ionization energy tends to decrease down a group and increase across a period.

$$
\begin{aligned}
& \text { Atom }_{(\mathrm{g})} \longrightarrow \text { Ion }^{+}+\mathrm{e}^{-} \quad \Delta \mathrm{E}=\mathrm{IE},>0 \\
& \text { lon }^{+} \longrightarrow \text { lon }^{2+}+\mathrm{e}^{-} \quad \Delta \mathrm{E}=\mathrm{IE} \\
&\left(\text { always }>\mathrm{IE}_{1}\right)
\end{aligned}
$$

UPLOADED BY AHMAD T JUNDI
Figure 8.11 First ionization energies of the main-group elements.

Sample Problem 8.4

Ranking Elements by First Ionization Energy

PROBLEM: Using the periodic table only, rank the elements in each of the following sets in order of decreasing IE_{1} :
(a) $\mathrm{Kr}, \mathrm{He}, \mathrm{Ar}$
(b) $\mathrm{Sb}, \mathrm{Te}, \mathrm{Sn}$
(c) $\mathrm{K}, \mathrm{Ca}, \mathrm{Rb}$
(d) I, Xe, Cs

PLAN: Find each element on the periodic table. IE_{1} generally decreases down a group and increases across a period.

SOLUTION:
(a) $\mathrm{He}>\mathrm{Ar}>\mathrm{Kr}$
Kr, He, and Ar are in Group 8A. IE_{1} decreases down the group.

Sample Problem 8.4

SOLUTION:

(b) $\mathrm{Te}>\mathrm{Sb}>\mathrm{Sn}$
Sb, Te, and Sn are in Period 5. IE_{1} increases across a period.
(c) $\mathrm{Ca}>\mathrm{K}>\mathrm{Rb}$
K has a higher IE_{1} than Rb because K is higher up in Group 1A. Ca has a higher IE_{1} than K because Ca is further to the right in Period 4.
(d) $\mathrm{Xe}>$ I $>$ Cs

Xe has a higher IE_{1} than I because Xe is further to the right in the same period. Cs has a lower IE_{1} than I because it is further to the left in a higher period.

UPLOADED BY AHMAD T JUNDI
Figure 8.12 The first three ionization energies of beryllium.
Ionization
energy
(MJ/mol)

Beryllium has 2 valence electrons, so $I E_{3}$ is much larger than $I E_{2}$.

Table 8.4 Successive lonization Energies of the Elements Lithium Through Sodium

Z	Element	Number of Valence Electrons	Ionization Energy (MJ/mol)*									
			IE_{1}	IE_{2}	IE_{3}	IE_{4}	$1 E_{5}$	$1 \mathrm{E}_{6}$	IE_{7}	IE_{8}	$1 E_{9}$	IE_{10}
3	Li	1	0.52	\|7.30	11.81							
4	Be	2	0.90	1.76	14.85	21.01			CORE	LECT	NS	
5	B	3	0.80	2.43	3.66	25.02	32.82					
6	C	4	1.09	2.35	4.62	6.22	37.83	47.28				
7	N	5	1.40	2.86	4.58	7.48	9.44	53.27	64.36			
8	O	6	1.31	3.39	5.30	7.47	10.98	13.33	71.33	84.08		
9	F	7	1.68	3.37	6.05	8.41	11.02	15.16	17.87	92.04	106.43	
10	Ne	8	2.08	3.95	6.12	9.37	12.18	15.24	20.00	23.07	115.38	131.43
11	Na	1	0.50	4.56	6.91	9.54	13.35	16.61	20.11	25.49	28.93	141.37

* $\mathrm{MJ} / \mathrm{mol}$, or megajoules per mole $=10^{3} \mathrm{~kJ} / \mathrm{mol}$.

Sample Problem 8.5

Identifying an Element from Its lonization Energies

PROBLEM: Name the Period 3 element with the following ionization energies (in $\mathrm{kJ} / \mathrm{mol}$) and write its electron configuration:

IE	IE	IE_{3}	IE_{4}	IE_{5}	IE_{6}
1012	1903	2910	4956	6278	22,230

PLAN: Look for a large increase in IE, which occurs after all valence electrons have been removed.

SOLUTION:

The largest increase occurs after IE_{5}, that is, after the 5th valence electron has been removed. The Period 3 element with 5 valence electrons is phosphorus ($P ; Z=15$).

The complete electron configuration is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$.

Trends in Electron Affinity

Electron Affinity (EA) is the energy change that occurs when 1 mol of electrons is added to 1 mol of gaseous atoms or ions.

Atoms with a low EA tend to form cations. Atoms with a high EA tend to form anions.

The trends in electron affinity are not as regular as those for atomic size or IE.

UPLOADED BY AHMAD T JUNDI
Figure 8.13 Electron affinities of the main-group elements (in kJ/mol).

$\begin{aligned} & \text { 1A } \\ & \text { (1) } \end{aligned}$							$\begin{gathered} 8 \mathrm{~A} \\ (18) \end{gathered}$
$\begin{gathered} \mathbf{H} \\ -72.8 \end{gathered}$	$\begin{aligned} & 2 A \\ & (2) \end{aligned}$	$\begin{array}{r} 3 \mathrm{~A} \\ (13) \\ \hline \end{array}$	$\begin{gathered} 4 \mathrm{~A} \\ (14) \end{gathered}$	$\begin{array}{r} 5 \mathrm{~A} \\ (15) \\ \hline \end{array}$	$\begin{array}{r} 6 \mathrm{~A} \\ (16) \\ \hline \end{array}$	$\begin{gathered} 7 A \\ (17) \end{gathered}$	(0.0)
$\begin{gathered} \mathbf{L i} \\ -59.6 \end{gathered}$	$\begin{aligned} & \mathrm{Be} \\ & \leq 0 \end{aligned}$	$\begin{gathered} \mathbf{B} \\ -26.7 \end{gathered}$	$\begin{gathered} \text { C } \\ -122 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & +7 \end{aligned}$	$\begin{gathered} \mathbf{O} \\ -141 \end{gathered}$	$\begin{gathered} \mathbf{F} \\ -328 \end{gathered}$	$\begin{gathered} \mathrm{Ne} \\ (+29) \end{gathered}$
$\begin{gathered} \mathrm{Na} \\ -52.9 \end{gathered}$	$\begin{gathered} \mathbf{M g} \\ \leq 0 \end{gathered}$	$\begin{gathered} \text { AI } \\ -42.5 \end{gathered}$	$\begin{gathered} \mathbf{S i} \\ -134 \end{gathered}$	$\begin{gathered} \mathbf{P} \\ -72.0 \end{gathered}$	$\begin{gathered} \mathbf{S} \\ -200 \end{gathered}$	$\begin{gathered} \mathrm{CI} \\ -349 \end{gathered}$	$\begin{gathered} \mathrm{Ar} \\ (+35) \end{gathered}$
$\begin{gathered} \text { K } \\ -48.4 \end{gathered}$	$\begin{gathered} \mathbf{C a} \\ -2.37 \end{gathered}$	$\begin{gathered} \mathbf{G a} \\ -28.9 \end{gathered}$	$\begin{gathered} \text { Ge } \\ -119 \end{gathered}$	$\begin{gathered} \text { As } \\ -78.2 \end{gathered}$	$\begin{gathered} \mathrm{Se} \\ -195 \end{gathered}$	$\begin{gathered} \mathrm{Br} \\ -325 \end{gathered}$	$\begin{gathered} \mathbf{K r} \\ (+39) \end{gathered}$
$\begin{gathered} \mathbf{R b} \\ -46.9 \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ -5.03 \end{gathered}$	$\begin{gathered} \text { ln } \\ -28.9 \end{gathered}$	$\begin{gathered} \text { Sn } \\ -107 \end{gathered}$	$\begin{gathered} \mathbf{S b} \\ -103 \end{gathered}$	$\begin{gathered} \mathrm{Te} \\ -190 \end{gathered}$	$\begin{gathered} \mathbf{I} \\ -295 \end{gathered}$	$\begin{gathered} \mathrm{Xe} \\ (+41) \end{gathered}$
$\begin{gathered} \text { Cs } \\ -45.5 \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ -13.95 \end{gathered}$	$\begin{gathered} \mathrm{TI} \\ -19.3 \end{gathered}$	$\begin{gathered} \mathbf{P b} \\ -35.1 \end{gathered}$	$\begin{gathered} \mathbf{B i} \\ -91.3 \end{gathered}$	$\begin{gathered} \text { Po } \\ -183 \end{gathered}$	$\begin{gathered} \text { At } \\ -270 \end{gathered}$	$\underset{(+41)}{\mathbf{R n}}$

UPLODED BY Ahmad Jundi

Behavior Patterns for IE and EA

Reactive nonmetals have high IEs and highly negative EAs.
These elements attract electrons strongly and tend to form negative ions in ionic compounds.

Reactive metals have low IEs and slightly negative EAs. These elements lose electrons easily and tend to form positive ions in ionic compounds.

Noble gases have very high IEs and slightly positive EAs. These elements tend to neither lose nor gain electrons.

Figure 8.14 Trends in three atomic properties.

Metallic Behavior

- Metals are typically shiny solids with moderate to high melting points.
- Metals are good conductors of heat and electricity, and can easily be shaped.
- Metals tend to lose electrons and form cations, i.e., they are easily oxidized.
- Metals are generally strong reducing agents.
- Most metals form ionic oxides, which are basic in aqueous solution.

Figure 8.15 Trends in metallic behavior.

Acid-Base Behavior of Oxides

Main-group metals form ionic oxides, which are basic in aqueous solution.

Main-group nonmetals form covalent oxides, which are acidic in aqueous solution.

Some metals and metalloids form amphoteric oxides, which can act as acids or bases in water:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2} \mathrm{O}(\Omega) \\
& \mathrm{Al}_{2} \mathrm{O}_{3}(s)+2 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(a q)
\end{aligned}
$$

UPLOADED BY AHMAD T JUNDI
Figure 8.16 Acid-base behavior of some element oxides.

Oxides become more basic down a group and more acidic across a period.

Electron configurations of Monatomic Ions

Elements at either end of a period gain or lose electrons to attain a filled outer level. The resulting ion will have a noble gas electron configuration and is said to be isoelectronic with that noble gas.

$$
\mathrm{Na}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}\right) \rightarrow \mathrm{e}^{-}+\mathrm{Na}^{+}\left([\mathrm{He}] 2 s^{2} 2 p^{6}\right)
$$

[isoelectronic with Ne]

$$
\operatorname{Br}\left([\operatorname{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}\right)+e^{-} \rightarrow \operatorname{Br}\left([\operatorname{Ar}] 4 s^{2} 3 d^{10} 4 p^{6}\right)
$$

[isoelectronic with Kr]
 electron configurations.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electron Configurations of Monatomic lons

A pseudo-noble gas configuration is attained when a metal atom empties its highest energy level.
The ion attains the stability of empty $n s$ and $n p$ sublevels and a filled ($n-1$) d sublevel.

$$
\mathrm{Sn}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}\right) \rightarrow 4 \mathrm{e}^{-}+\mathrm{Sn}^{4+}\left([\mathrm{Kr}] 4 d^{10}\right)
$$

A metal may lose only the $n p$ electrons to attain an inert pair configuration.
The ion attains the stability of a filled $n s$ and ($n-1$) d sublevels.

$$
\operatorname{Sn}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}\right) \rightarrow 2 \mathrm{e}^{-}+\mathrm{Sn}^{2+}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10}\right)
$$

Sample Problem 8.6

 IonsPROBLEM: Using condensed electron configurations, write reactions for the formation of the common ions of the following elements:
(a) lodine $(Z=53)$
(b) Potassium ($Z=19$)
(c) Indium ($Z=49$)

PLAN: Identify the position of each element on the periodic table and recall that:

- Ions of elements in Groups 1A(1), 2A(2), 6A(16), and 7A(17) are usually isoelectronic with the nearest noble gas.
- Metals in Groups 3A(13) to 5A(15) can lose the $n s$ and $n p$ electrons or just the $n p$ electrons.

Sample Problem 8.6

SOLUTION:

(a) lodine $(Z=53)$ is in Group 7A(17) and will gain one electron to be isoelectronic with $\mathrm{Xe}: \mathrm{I}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}\right)+\mathrm{e}^{-} \rightarrow \mathrm{I}^{-}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}\right)$
(b) Potassium ($Z=19$) is in Group $1 \mathrm{~A}(1)$ and will lose one electron to be isoelectronic with $\mathrm{Ar}: \mathrm{K}\left([\mathrm{Ar}] 4 s^{1}\right) \rightarrow \mathrm{K}^{+}([\mathrm{Ar}])+\mathrm{e}^{-}$
(c) Indium ($Z=49$) is in Group 3A(13) and can lose either one electron or three electrons: In $\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{1}\right) \rightarrow \quad \operatorname{In}^{+}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10}\right)+\mathrm{e}^{-}$

$$
\operatorname{In}\left([K r] 5 s^{2} 4 d^{10} 5 p^{1}\right) \rightarrow \quad \ln ^{3+}\left([K r] 4 d^{10}\right)+3 e^{-}
$$

Figure 8.18 The crossover of sublevel energies in Period 4.

UPLODED BY Ahmad Jundi

Magnetic Properties of Transition Metal Ions

A species with one or more unpaired electrons exhibits paramagnetism - it is attracted by a magnetic field.

$$
\mathrm{Ag}(Z=47)
$$

A species with all its electrons paired exhibits diamagnetism - it is not attracted (and is slightly repelled) by a magnetic field.

UPLOADED BY AHMAD T JUNDI

Figure 8.19 Measuring the magnetic behavior of a sample.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Electromagnet

The apparent mass of a diamagnetic substance is unaffected by the magnetic field.

B Electromagnet

The apparent mass of a paramagnetic substance increases as it is attracted by the magnetic field.

Magnetic Properties of Transition Metal ions

Magnetic behavior can provide evidence for the electron configuration of a given ion.

$$
\begin{aligned}
& \mathrm{Ti}(Z \\
& \mathrm{Ti}^{2+}
\end{aligned}
$$

Ti^{2+} has 2 unpaired electrons and is paramagnetic, providing evidence that the $4 s$ electrons are lost before the $3 d$ electrons.

Sample Problem 8.7

Writing Electron Configurations and Predicting Magnetic Behavior of Transition Metal Ions

PROBLEM: Use condensed electron configurations to write the reaction for the formation of each transition metal ion, and predict whether the ion is paramagnetic or diamagnetic.
(a) $\mathrm{Mn}^{2+}(\mathrm{Z}=25)$
(b) $\mathrm{Cr}^{3+}(\mathrm{Z}=24)$
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80)$

PLAN: Write the condensed electron configuration for each atom, recalling the irregularity for Cr. Remove electrons, beginning with the $n s$ electrons, and determine if there are any unpaired electrons.

Sample Problem 8.7

SOLUTION:

(a) $\mathrm{Mn}^{2+}(\mathrm{Z}=25) \mathrm{Mn}\left([\mathrm{Ar}] 4 s^{2} 3 d^{5}\right) \rightarrow \mathrm{Mn}^{2+}\left([\mathrm{Ar}] 3 d^{6}\right)+2 \mathrm{e}^{-}$

Since there are $5 d$ electrons they are all unpaired. Mn^{2+} is paramagnetic.
(b) $\mathrm{Cr}^{3+}(\mathrm{Z}=24) \mathrm{Cr}\left([\mathrm{Ar}] 4 s^{1} 3 d^{\sigma}\right) \rightarrow \mathrm{Cr}^{3+}\left([\mathrm{Ar}] 3 d^{\beta}\right)+3 \mathrm{e}^{-}$

Since there are $3 d$ electrons they are all unpaired. Cr^{3+} is paramagnetic.
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80) \mathrm{Hg}\left([\mathrm{Xe}] 6 s^{2} 4 f^{4} 5 d^{10}\right) \rightarrow \mathrm{Hg}^{2+}\left([\mathrm{Xe}] 4 f^{4} 5 d^{10}\right)+2 \mathrm{e}^{-}$

The $4 f$ and the $5 d$ sublevels are filled, so there are no unpaired electrons. Hg^{2+} is diamagnetic.

Ionic Size vs. Atomic Size

Cations are smaller than their parent atoms while anions are larger.
lonic radius increases down a group as n increases.
Cation size decreases as charge increases.
An isoelectronic series is a series of ions that have the same electron configuration. Within the series, ion size decreases with increasing nuclear charge.
3-> 2-> 1-> 1+ > 2+ > 3+

Ionic radius.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lonic vs. atomic radii.

Ranking lons by Size

PROBLEM: Rank each set of ions in order of decreasing size, and explain your ranking:
(a) $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Mg}^{2+}$
(b) $\mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$
(c) $\mathrm{Au}^{+}, \mathrm{Au}^{3+}$

PLAN: Find the position of each element on the periodic table and apply the trends for ionic size.

SOLUTION:

(a) $\mathrm{Sr}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$

All these ions are from Group 2A, so size increases down the group.

Sample Problem 8.8

SOLUTION:

(b) $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$

These ions are isoelectronic, so size decreases as nuclear charge increases.
(c) $\mathrm{Au}^{+}>\mathrm{Au}^{3+}$

Cation size decreases as charge increases.

See separate Image PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.

Chapter 09

Lecture Outline

Chapter 9

Models of Chemical Bonding

Models of Chemical Bonding

9.1 Atomic Properties and Chemical Bonds
9.2 The Ionic Bonding Model
9.3 The Covalent Bonding Model
9.4 Bond Energy and Chemical Change
9.5 Between the Extremes: Electronegativity and Bond Polarity

UPLOADED BY AHMAD T JUNDI
Figure 9.1 A comparison of metals and nonmetals.

Types of Chemical Bonding

Ionic bonding involves the transfer of electrons and is usually observed when a metal bonds to a nonmetal.

Covalent bonding involves the sharing of electrons and is usually observed when a nonmetal bonds to a nonmetal.

Metallic bonding involves electron pooling and occurs when a metal bonds to another metal.

Figurlo $9.2{ }^{\text {D }}$ BY AHAADTJUNDI models of chemical bonding.

Figurfeg.s Ahmad Thradations in bond type among Period 3 (black type) and Group 4A (red type) elements.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lewis Electron-Dot Symbols

To draw the Lewis symbol for any main-group element:

- Note the A-group number, which gives the number of valence electrons.
- Place one dot at a time on each of the four sides of the element symbol.
- Keep adding dots, pairing them, until all are used up.

Example:
Nitrogen, N , is in Group 5A and therefore has 5 valence electrons.

Lewis Symbols and Bonding

For a metal, the total number of dots in the Lewis symbol is the number of electrons the atom loses to form a cation.

For a nonmetal, the number of unpaired dots equals

- the number of electrons the atom gains to form an anion
- or the number it shares to form covalent bonds.

The octet rule states that when atoms bond, they lose, gain, or share electrons to attain a filled outer level of 8 electrons (or 2, for H and Li).

UPLOADED BY AHMAD T JUNDI
Figure 9.4
Lewis electron-dot symbols for elements in Periods 2 and 3.

3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
$n s^{2} n p^{1}$	$n s^{2} n p^{2}$	$n s^{2} n p^{3}$	$n s^{2} n p^{4}$	$n s^{2} n p^{5}$	$n s^{2} n p^{6}$
\dot{B}	$\stackrel{\circ}{\mathrm{C}}$	- $\stackrel{\bullet}{\text { N }}$ -	$\ddot{0}$	$\stackrel{\bullet}{\mathrm{F}}$:	: Ne:
- AI	$\cdot \stackrel{\bullet}{\text { Si }}$	- P .	: $\mathrm{S}^{\text {. }}$	$: \ddot{\mathrm{Cl}}:$: $\stackrel{A r}{*}$: $^{\circ}$

The Ionic Bonding Model

An ionic bond is formed when a metal transfers electrons to a nonmetal to form ions, which attract each other to give a solid compound.

The total number of electrons lost by the metal atom(s) equals the total number of electrons gained by the nonmetal atoms.

Figure 9.5 Three ways to depict electron transfer in the formation of Li^{+}and F^{-}.

Electron configurations $\mathrm{Li} 1 s^{2} 2 s^{1}+\mathrm{F} 1 s^{2} 2 p^{5} \rightarrow \mathrm{Li}^{+} 1 s^{2}+\mathrm{F}^{-} 1 s^{2} 2 s^{2} 2 p^{6}$

Orbital diagrams

Lewis electron-dot symbols

PROBLEM: Use partial orbital diagrams and Lewis symbols to depict the formation of Na^{+}and O^{2-} ions from the atoms, and determine the formula of the compound formed.

PLAN: Draw orbital diagrams and Lewis symbols for Na and O atoms. To attain filled outer levels, Na loses one electron and O gains two. Two Na atoms are needed for each O atom so that the number of electrons lost equals the number of electrons gained.

SOLUTION:

Sample Problem 9.1

The formula is $\mathrm{Na}_{2} \mathrm{O}$

Figure 9.6 The exothermic formation of sodium bromide.

Periodic Trends in Lattice Energy

Lattice energy is the energy required to separate 1 mol of an ionic solid into gaseous ions.

Lattice energy is a measure of the strength of the ionic bond.
Coloumb's Law
Electrostatic energy $\propto \quad \frac{\text { charge } A \times \text { charge } B}{\text { distance }}$
Electrostatic energy $\propto \frac{\text { cation charge } x \text { anion charge }}{\text { cation radius + anion radius }} \propto \Delta H_{\text {lattice }}$

Periodic Trends in Lattice Energy

Lattice energy is affected by ionic size and ionic charge.
As ionic size increases, lattice energy decreases.
Lattice energy therefore decreases down a group on the periodic table.

As ionic charge increases, lattice energy increases.

UPLOADED BY AHMAD T JUNDI
Figure 9.7 Trends in lattice energy.

Properties of Ionic Compounds

- Ionic compounds tend to be hard, rigid, and brittle, with high melting points.
- lonic compounds do not conduct electricity in the solid state.
- In the solid state, the ions are fixed in place in the lattice and do not move.
- lonic compounds conduct electricity when melted or dissolved.
- In the liquid state or in solution, the ions are free to move and carry a current.

Figure 9.8 Why ionic compounds crack.

UPLOADED BY:Ahmad Jundi

Figure 9.9 ${ }^{\text {UPLOADED }}$ Electrical conductance and ion mobility.

Solid ionic compound

Molten ionic UPLERETBOB4?Ahmad Jundi

Ionic compound dissolved in water

UPLOADED BY AHMAD T JUNDI

Table 9.1 Melting and Boiling Points of Some lonic Compounds

Compound	mp $\left({ }^{\circ} \mathrm{C}\right)$	bp $\left({ }^{\circ} \mathrm{C}\right)$
CsBr	636	1300
NaI	661	1304
MgCl_{2}	714	1412
$\mathrm{KBr}^{\mathrm{CaCl}}$	734	1435
NaCl	782	>1600
LiF	801	1413
KF	845	1676
MgO	858	1505
	2852	3600

Figure 9.10 Covalent bond formation in $\mathrm{H}_{\mathbf{2}}$.

Figure 9.11 Distribution of electron density in H_{2}.

At some distance (bond length), attractions balance repulsions.

Electron density is high around and between the nuclei.

Bonding Pairs and Lone Pairs

Atoms share electrons to achieve a full outer level of electrons. The shared electrons are called a shared pair or bonding pair.

The shared pair is represented as a pair of dots or a line:

$$
\mathrm{H}: \mathrm{H} \text { or } \mathrm{H}-\mathrm{H}
$$

An outer-level electron pair that is not involved in bonding is called a lone pair, or unshared pair.

Properties of a Covalent Bond

The bond order is the number of electron pairs being shared by a given pair of atoms.
A single bond consists of one bonding pair and has a bond order of 1 .
The bond energy (BE) is the energy needed to overcome the attraction between the nuclei and the shared electrons. The stronger the bond the higher the bond energy.

The bond length is the distance between the nuclei of the bonded atoms.

Trends in bond order, energy, and length

For a given pair of atoms, a higher bond order results in a shorter bond length and higher bond energy.

For a given pair of atoms, a shorter bond is a stronger bond.

Bond length increases down a group in the periodic table and decreases across the period.

Bond energy shows the opposite trend.

UPLOADED BY AHMAD T JUNDI

Table 9.2 Average Bond Energies ($\mathrm{kJ} / \mathrm{mol}$) and Bond Lengths (pm)

Bond	Energy	Length									
Single Bonds											
H-H	432	74	$\mathrm{N}-\mathrm{H}$	391	101	$\mathrm{Si}-\mathrm{H}$	323	148	S-H	347	134
$\mathrm{H}-\mathrm{F}$	565	92	$\mathrm{N}-\mathrm{N}$	160	146	$\mathrm{Si}-\mathrm{Si}$	226	234	S-S	266	204
$\mathrm{H}-\mathrm{Cl}$	427	127	$\mathrm{N}-\mathrm{P}$	209	177	$\mathrm{Si}-\mathrm{O}$	368	161	S-F	327	158
$\mathrm{H}-\mathrm{Br}$	363	141	$\mathrm{N}-\mathrm{O}$	201	144	$\mathrm{Si}-\mathrm{S}$	226	210	$\mathrm{S}-\mathrm{Cl}$	271	201
$\mathrm{H}-\mathrm{I}$	295	161	$\mathrm{N}-\mathrm{F}$	272	139	$\mathrm{Si}-\mathrm{F}$	565	156	$\mathrm{S}-\mathrm{Br}$	218	225
			$\mathrm{N}-\mathrm{Cl}$	200	191	$\mathrm{Si}-\mathrm{Cl}$	381	204	S-I	~ 170	234
$\mathrm{C}-\mathrm{H}$	413	109	$\mathrm{N}-\mathrm{Br}$	243	214	$\mathrm{Si}-\mathrm{Br}$	310	216			
$\mathrm{C}-\mathrm{C}$	347	154	$\mathrm{N}-\mathrm{I}$	159	222	Si-I	234	240	F-F	159	143
$\mathrm{C}-\mathrm{Si}$	301	186							$\mathrm{F}-\mathrm{Cl}$	193	166
$\mathrm{C}-\mathrm{N}$	305	147	$\mathrm{O}-\mathrm{H}$	467	96	$\mathrm{P}-\mathrm{H}$	320	142	$\mathrm{F}-\mathrm{Br}$	212	178
$\mathrm{C}-\mathrm{O}$	358	143	$\mathrm{O}-\mathrm{P}$	351	160	$\mathrm{P}-\mathrm{Si}$	213	227	$\mathrm{F}-\mathrm{I}$	263	187
$\mathrm{C}-\mathrm{P}$	264	187	$\mathrm{O}-\mathrm{O}$	204	148	$\mathrm{P}-\mathrm{P}$	200	221	$\mathrm{Cl}-\mathrm{Cl}$	243	199
$\mathrm{C}-\mathrm{S}$	259	181	$\mathrm{O}-\mathrm{S}$	265	151	$\mathrm{P}-\mathrm{F}$	490	156	$\mathrm{Cl}-\mathrm{Br}$	215	214
C-F	453	133	$\mathrm{O}-\mathrm{F}$	190	142	$\mathrm{P}-\mathrm{Cl}$	331	204	$\mathrm{Cl}-\mathrm{I}$	208	243
$\mathrm{C}-\mathrm{Cl}$	339	177	$\mathrm{O}-\mathrm{Cl}$	203	164	$\mathrm{P}-\mathrm{Br}$	272	222	$\mathrm{Br}-\mathrm{Br}$	193	228
$\mathrm{C}-\mathrm{Br}$	276	194	$\mathrm{O}-\mathrm{Br}$	234	172	$\mathrm{P}-\mathrm{I}$	184	246	$\mathrm{Br}-\mathrm{I}$	175	248
C-I	216	213	$\mathrm{O}-\mathrm{I}$	234	194				I-I	151	266
Multiple Bonds											
$\mathrm{C}=\mathrm{C}$	614	134	$\mathrm{N}=\mathrm{N}$	418	122	$\mathrm{C} \equiv \mathrm{C}$	839	121	$\mathrm{N} \equiv \mathrm{N}$	945	110
$\mathrm{C}=\mathrm{N}$	615	127	$\mathrm{N}=\mathrm{O}$	607	120	$\mathrm{C} \equiv \mathrm{N}$	891	115	$\mathrm{N} \equiv \mathrm{O}$	631	106
$\mathrm{C}=\mathrm{O}$	745	123	O_{2}	498	121	$\mathrm{C} \equiv \mathrm{O}$	1070	113			
$\left(799 \text { in } \mathrm{CO}_{2}\right)$											

Table 9.3 The Relation of Bond Order, Bond Length, and Bond Energy

Bond	Bond Order	Average Bond Length (pm)	Average Bond Energy (kJ/mol)
$\mathrm{C}-\mathrm{O}$	1	143	358
$\mathrm{C}=\mathrm{O}$	2	123	745
$\mathrm{C} \equiv \mathrm{O}$	3	113	1070
$\mathrm{C}-\mathrm{C}$	1	154	347
$\mathrm{C}=\mathrm{C}$	2	134	614
$\mathrm{C} \equiv \mathrm{C}$	3	121	839
$\mathrm{~N}-\mathrm{N}$	1	146	160
$\mathrm{~N}=\mathrm{N}$	2	122	418
$\mathrm{~N} \equiv \mathrm{~N}$	3	110	945

Bond length and covalent radius.

Sample Problem 9.2 Comparing Bond Length and Bond Strength

PROBLEM: Using the periodic table, but not Tables 9.2 or 9.3, rank the bonds in each set in order of decreasing bond length and decreasing bond strength:
(a) S-F, S-Br, S-Cl
(b) $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{O}, \mathrm{C}=\mathrm{O}$

PLAN: (a) S is singly bonded to three different halogen atoms, so the bond order is the same. Bond length increases and bond strength decreases as the atomic radius of the halogen increases.
(b) The same two atoms are bonded in each case, but the bond orders differ. Bond strength increases and bond length decreases as bond order increases.

Sample Problem 9.2

SOLUTION:

(a) Atomic size increases going down a group, so $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}$.

> Bond length: $\mathrm{S}-\mathrm{Br}>\mathrm{S}-\mathrm{Cl}>\mathrm{S}-\mathrm{F}$ Bond strength: $\mathrm{S}-\mathrm{F}>\mathrm{S}-\mathrm{Cl}>\mathrm{S}-\mathrm{Br}$
(b) By ranking the bond orders, we get

> Bond length: $\mathrm{C}-\mathrm{O}>\mathrm{C=O}>\mathrm{C} \equiv \mathrm{O}$
> Bond strength: $\mathrm{C}=\mathrm{O}>\mathrm{C}=\mathrm{O}>\mathrm{C}-\mathrm{O}$

UPLOADED BY AHMAD T JUNDI Figure 9.13

 Strong forces within molecules and weak forces between them.

 Strong forces within molecules and weak forces between them.}

© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer

Figure 9.14 Covalent bonds of network covalent solids: quartz and diamond.

B Diamond

A Quartz

Silicon
O Oxygen

Figure 9.15 The infrared (IR) spectra of 2-butanol (green) and diethyl ether (red).

Bond Energies and $\Delta \boldsymbol{H}_{\mathrm{rxn}}$

The heat released or absorbed during a chemical change is due to differences between the bond energies of reactants and products.

$$
\Delta H_{\mathrm{rxn}}^{0}=\Sigma \Delta H_{\text {reactant bonds broken }}^{0}+\Sigma \Delta H_{\text {product bonds formed }}^{0}
$$

Figure 9.16 Using bond energies to calculate $\Delta H^{\circ}{ }_{r \times n}$ for HF formation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 combustion of methane.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PROBLEM: Calculate $\Delta H^{p} \mathrm{rxn}$ for the chlorination of methane to form chloroform.

PLAN: All the reactant bonds break, and all the product bonds form. Find the bond energies in Table 9.2 and substitute the two sums, with correct signs, into Equation 9.2.

SOLUTION:

For bonds broken:

$$
\begin{array}{r}
4 \times \mathrm{C}-\mathrm{H}=(4 \mathrm{~mol})(413 \mathrm{~kJ} / \mathrm{mol})=1652 \mathrm{~kJ} \\
\frac{3 \times \mathrm{Cl}-\mathrm{Cl}=(3 \mathrm{~mol})(243 \mathrm{~kJ} / \mathrm{mol})=729 \mathrm{~kJ}}{\Sigma \Delta H_{\text {bonds broken }}=2381 \mathrm{~kJ}}
\end{array}
$$

For bonds formed:

$$
\begin{aligned}
& 3 \times \mathrm{C}-\mathrm{Cl}=(3 \mathrm{~mol})(-339 \mathrm{~kJ} / \mathrm{mol})=-1017 \mathrm{~kJ} \\
& 1 \mathrm{C}-\mathrm{H}=(1 \mathrm{~mol})(-413 \mathrm{~kJ} / \mathrm{mol})=-413 \mathrm{~kJ} \\
& 3 \times \mathrm{H}-\mathrm{Cl}=(3 \mathrm{~mol})(-427 \mathrm{~kJ} / \mathrm{mol})=-1281 \mathrm{~kJ} \\
& \Sigma \Delta H_{\text {bonds formed }}=-2711 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathscr{H}_{\text {reaction }} & =\Sigma \Delta H_{\text {bonds broken }}+\Sigma \Delta H_{\text {bonds formed }} \\
& =2381 \mathrm{~kJ}+(-2711 \mathrm{~kJ})=-330 \mathrm{~kJ}
\end{aligned}
$$

Electronegativity and Bond Polarity

A covalent bond in which the shared electron pair is not shared equally, but remains closer to one atom than the other, is a polar covalent bond.

The ability of an atom in a covalent bond to attract the shared electron pair is called its electronegativity.

Unequal sharing of electrons causes the more electronegative atom of the bond to be partially negative and the less electronegative atom to be partially positive.

UPLOADED BY:Ahmad Jundi

Figureaged 9.19 AHMADTJUNP ${ }^{\text {U }}$ Thauling electronegativity (EN) scale.

UPLOADED BY:Ahmad Jundi

Trends in Electronegativity

The most electronegative element is fluorine.
In general electronegativity decreases down a group as atomic size increases.

In general electronegativity increases across a period as atomic size decreases.

Nonmetals are more electronegative than metals.

Electronegativity and Oxidation Number

Electronegativities can be used to assign oxidation numbers:

- The more electronegative atom is assigned all the shared electrons.
- The less electronegative atom is assigned none of the shared electrons.
- Each atom in a bond is assigned all of its unshared electrons.
- O.N. = \# of valence e^{-}(\# of shared $e^{-}+$\# of unshared $\left.e^{-}\right)$

Example:

Cl is more electronegative than H , so for Cl : valence $\mathrm{e}^{-}=7$ shared $\mathrm{e}^{-}=2$
unshared $\mathrm{e}^{-}=6$
O.N. $=7-(2+6)=-1$

H is less electronegative than Cl , so for H :
valence $e^{-}=1$
shared $\mathrm{e}^{-} \quad=0$ (all shared e^{-}assigned to Cl)
unshared $\mathrm{e}^{-}=0$
O.N.
$=1-(0+0)=+1$

Depicting Polar Bonds

The unequal sharing of electrons can be depicted by a polar arrow. The head of the arrow points to the more electronegative element.

A polar bond can also be marked using $\delta+$ and δ - symbols.

UPLOADED BY AHMAD T JUNDI
Figure 9.20 Electron density distributions in $\mathrm{H}_{2}, \mathrm{~F}_{2}$, and HF .

In HF, the electron density shifts from H to F .
The H-F bond has partial ionic character.

UPLOADED BY AHMAD T JUNDI
Figure $9.21 \Delta E N$ ranges for classifying the partial ionic character of bonds.
Copyight © The McGraw--ill Companies, Inc. Permission required for reproduction or display.

Figure $9.22{ }^{\text {BY }}$ AHMAD P TUUND ionic character as a function of $\triangle \mathrm{EN}$.

UPLOADED BY:Ahmad Jundi

PROBLEM: (a) Use a polar arrow to indicate the polarity of each bond: $\mathrm{N}-\mathrm{H}, \mathrm{F}-\mathrm{N}, \mathrm{I}-\mathrm{Cl}$.
(b) Rank the following bonds in order of increasing polarity: $\mathrm{H}-\mathrm{N}, \mathrm{H}-\mathrm{O}, \mathrm{H}-\mathrm{C}$.
PLAN: (a) We use Figure 9.21 to find the EN values for each element. The polar arrow points toward the more electronegative element.
(b) The greater the $\Delta \mathrm{EN}$ between the atoms, the more polar the bond.

SOLUTION: (a) The EN values are:

$$
\underset{\mathrm{N}-\mathrm{H}}{\stackrel{+}{+}} \underset{\mathrm{F}-\mathrm{N}}{\stackrel{+}{+}} \underset{\mathrm{l}-\mathrm{Cl}}{+} \mathrm{H}=2.1 ; \mathrm{F}=4.0 ; \mathrm{I}=2.5, \mathrm{Cl}=3.0
$$

Sample Problem 9.4

(b) The EN values are:
$\mathrm{N}=3.0, \mathrm{H}=2.1 ; \mathrm{O}=3.5 ; \mathrm{C}=2.5$
$\Delta \mathrm{EN}$ for $\mathrm{H}-\mathrm{N}=3.0-2.1=0.9$
$\Delta \mathrm{EN}$ for $\mathrm{H}-\mathrm{O}=3.5-2.1=1.4$
$\Delta \mathrm{EN}$ for $\mathrm{H}-\mathrm{C}=2.5-2.1=0.4$

```
H-C < H-N < H-O
```

Figure $9.23 \quad$ Properties of the Period 3 chlorides.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

As $\Delta \mathrm{EN}$ decreases, melting point and electrical conductivity decrease because the bond type changes from ionic to polar covalent to nonpolar covalent.

Connect
UPEQAPED BY AHMAD T JUNDI

Chapter 12

Lecture Outline

See separate Image PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.

UPLOADED BY:Ahmad Jundi

Chapter 12

Intermolecular Forces:
 Liquids, Solids, and Phase Changes

UPLOADED BY AHMAD T JUNDI

Intermolecular Forces: Liquids, Solids, and Phase Changes

12.1 An Overview of Physical States and Phase Changes
12.2 Quantitative Aspects of Phase Changes
12.3 Types of Intermolecular Forces
12.4 Properties of the Liquid State
12.5 The Uniqueness of Water
12.6-The Golid-Gtate: Otrueture, Properties, and Bonding

Phases of Matter

Each physical state of matter is a phase, a physically distinct, homogeneous part of a system.

The properties of each phase are determined by the balance between the potential and kinetic energy of the particles.

The potential energy, in the form of attractive forces, tends to draw particles together.

The kinetic energy associated with movement tends to disperse particles.

Attractive Forces

Intramolecular or bonding forces are found within a molecule. The chemical behavior of each phase of matter is the same because the same basic particle is present in each case.
$\mathrm{H}_{2} \mathrm{O}$ molecules are present whether the substance is in the solid, liquid, or gas phase.

Intermolecular or nonbonding forces are found between molecules. The physical behavior of each phase of matter is different because the strength of these forces differs from state to state.

Intramolecular Forces -
Force which keeps moleculetogether, i.e., bonds.

Intermolecular Forces -
Attractive force between molectules. R esponsible for keeping matter i solid or liquid phase.

Table 12.1 A Macroscopic Comparison of Gases, Liquids, and Solids

State Shape and Volume

Gas Conforms to shape and volume of container
$\begin{array}{ll}\text { Liquid } & \text { Conforms to shape of } \\ & \text { container; volume limited by }\end{array}$ surface
Solid Maintains its own shape and Almost none volume

Compressibility Ability to Flow

High

Very low
Moderate

Almost none

Kinetic Molecular View of the Three States

Attractive Forces vs. Kinetic Energy

Gas Attractive forces are weak relative to kinetic energy.

Properties

Particles are far apart. A gas has no fixed shape or volume.

Liquid
Attractive forces are stronger because particles have less kinetic energy.

A liquid can flow and change shape, but has a fixed volume.

Solid Attractions dominate motion. Particles are fixed in place relative to each other.

Phase Changes

sublimation

Deposition (Desublimation)
UPLOADED BY:Ahmad Jundi

UPLOADED BY AHMAD T JUNDI
Figure 12.1 Heats of vaporization and fusion for several common substances.

Figure 12.2 Phase changes and their enthalpy changes.

Quantitative Aspects of Phase Changes

Within a phase, heat flow is accompanied by a change in temperature, since the average E_{k} of the particles changes.

$$
q=(\text { amount }) \times(\text { heat capacity }) \times \Delta T
$$

During a phase change, heat flow occurs at constant temperature, as the average distance between particles changes.

$$
q=\text { (amount)(} \Delta H \text { of phase change) }
$$

Figure 12.3 A cooling curve for the conversion of gaseous water to ice.

Sampronab
Sample Problem 12.1

Finding the Heat of a Phase Change Depicted by Molecular Scenes

PROBLEM: The scenes below represent a phase change of water. Select data from the previous text discussion to find the heat (in kJ) released or absorbed when 24.3 g of $\mathrm{H}_{2} \mathrm{O}$ undergoes this change.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PLAN: The scenes show a disorderly, condensed phase at $85.0^{\circ} \mathrm{C}$ changing to separate particles at $117^{\circ} \mathrm{C}$. A liquid is becoming a gas, so the scene shows vaporization. We must identify the number of stages in the process and calculate the heat absorbed in each.

Sa UPDOABEDEYAMMAD TJNNDI

Sample Problem 12.1

SOLUTION:

There are 3 stages involved in this process:

1) heating of the liquid to its boiling point
2) the phase change from liquid to gas
3) heating the gas to the final temperature

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$
\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=24.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=1.35 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

For Stage 1:

$$
\begin{aligned}
& q=n \times C_{\text {water(})} \times \Delta T \\
& \text { Molar heat capacity }(C)=q / \text { moles } \times \Delta T \quad\left(\mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right) \\
& C \text { of } \mathrm{H}_{2} \mathrm{O}(\Lambda)=4.184 \mathrm{~J} / \mathrm{g} . \mathrm{K} \times 18.02 \mathrm{~g} / \mathrm{mol}=75.40 \mathrm{~J} / \mathrm{mol} . \mathrm{K} \\
& q=n \times C_{\text {water }(\Lambda)} \times \Delta T \\
& =(1.35 \mathrm{~mol})\left(75.4 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right)\left(100 .-85.0^{\circ} \mathrm{C}\right) \\
& =1527 \mathrm{~J}=1.53 \mathrm{~kJ}
\end{aligned}
$$

SaPROABED BYAHMAD TJUNDI
 Sample Problem 12.1

For Stage 2:
$q=n\left(\Delta H^{\text {vap }}\right)=(1.35 \mathrm{~mol})(40.7 \mathrm{~kJ} / \mathrm{mol})=54.9 \mathrm{~kJ}$

For Stage 3:

```
\(q=n \times C_{\text {water }(g)} \times \Delta T\)
    \(=(1.35 \mathrm{~mol})\left(33.1 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right)\left(117-100 .{ }^{\circ} \mathrm{C}\right)\)
    \(=759.6 \mathrm{~J}=0.760 \mathrm{~kJ}\)
```

 \(C\) of \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=1.843 \mathrm{~J} / \mathrm{g} . \mathrm{K}\)
 $$
q_{\text {total }}=1.53+54.9+0.760 \mathrm{~kJ}=57.2 \mathrm{~kJ}
$$

Figure 12.4 Liquid-gas equilibrium.

A Molecules in the liquid vaporize. B Molecules vaporize and condense at the same rate.

In a closed flask, the system reaches a state of dynamic equilibrium, where molecules are leaving and entering the liquid at the same rate.

Figure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C Plot of pressure vs. time.
The vapor pressure is the pressure exerted by the vapor on the liquid. The pressure increases until equilibrium is reached; at equilibrium the pressure is constant.

Figure 12.5 The effect of temperature on the distribution of molecular speeds.

Factors affecting Vapor Pressure

As temperature increases, the fraction of molecules with enough energy to enter the vapor phase increases, and the vapor pressure increases.

$$
\text { higher } T \longrightarrow \text { higher } P
$$

The weaker the intermolecular forces, the more easily particles enter the vapor phase, and the higher the vapor pressure.

weaker forces \longrightarrow higher P

Figure 12.6 Vapor pressure as a function of temperature and intermolecular forces.

Vapor pressure increases as temperature increases.

Vapor pressure decreases as the strength of the intermolecular forces increases.

The Clausius-Clapeyron Equation

This equation relates vapor pressure to temperature.

$$
\ln P=\frac{-\Delta H_{\mathrm{vap}}}{R}\left(\frac{1}{T}\right)+C
$$

The two-point form is used when the vapor pressures at two different temperatures are known.

$$
\ln \frac{P_{2}}{P_{1}}=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Figure 12.7 Linear plots of the relationship between vapor pressure and temperature.

Sample Problem 12.2

PROBLEM: The vapor pressure of ethanol is 115 torr at $34.9^{\circ} \mathrm{C}$. If $\Delta H_{\text {vap }}$ of ethanol is $40.5 \mathrm{~kJ} / \mathrm{mol}$, calculate the temperature (in ${ }^{\circ} \mathrm{C}$) when the vapor pressure is 760 torr.
PLAN: We are given 4 of the 5 variables in the Clausius-Clapeyron equation, so we substitute these into the equation and solve for T_{2}. T values must be converted to K .

SOLUTION:

$$
\begin{aligned}
& \text { In } \frac{P_{2}}{P_{1}}=-\frac{\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \quad T_{1}=34.9^{\circ} \mathrm{C}+273.15=308.0 \mathrm{~K} \\
& \text { In } \frac{760 \text { torr }}{115 \text { torr }}=-\frac{40.5 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(\frac{1}{T_{2}}-\frac{1}{308.0 \mathrm{~K}}\right)
\end{aligned}
$$

$$
T_{2}=350 . \mathrm{K}-273.15=77^{\circ} \mathrm{C}
$$

Vapor Pressure and Boiling Point

The boiling point of a liquid is the temperature at which the vapor pressure equals the external pressure.

The normal boiling point of a substance is observed at standard atmospheric pressure or 760 torr.

As the external pressure on a liquid increases, the boiling point increases.

Figure 12.8
Phase diagram for CO_{2}.

Figure 12.8

Phase diagram for $\mathrm{H}_{2} \mathrm{O}$.

The solid-liquid line slants to the left for $\mathrm{H}_{2} \mathrm{O}$, because the solid is less dense than the liquid. Water expands on freezing.

The Nature of Intermolecular Forces

Intermolecular forces arise from the attraction between molecules with partial charges, or between ions and molecules.

Intermolecular forces are relatively weak compared to bonding forces because they involve smaller charges that are farther apart.

Figure 12.9A Covalent and van der Waals radii.
The van der Waals distance is the distance between two nonbonded atoms in adjacent molecules.

The van der Waals radius is one-half the closest distance between the nuclei of two nonbonded atoms. The VDW radius is always larger than the covalent radius.

Figure 12.9B Periodic trends in covalent and van der Waals radii.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

B

UPLOADED BY:Ahmad Jundi

Table 12.2 Comparison of Bonding and Nonbonding (Intermolecular) Forces

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding				
Ionic		Cation-anion	400-4000	NaCl
Covalent		Nuclei-shared e^{-}pair	150-1100	$\mathrm{H}-\mathrm{H}$
Metallic		Cations-delocalized	75-1000	Fe

Table 12.2 Comparison of Bonding and Nonbonding (Intermolecular) Forces (continued)

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Nonbonding (Intermolecular)				
Ion-dipole		Ion chargedipole charge	40-600	
H bond	$\begin{aligned} & \delta_{+} \\ & \mathrm{H} \end{aligned}$	Polar bond to H_{-} dipole charge (high EN of N, O, F)	10-40	
Dipole-dipole		Dipole charges	5-25	$1-\mathrm{Cl} \cdots \mathrm{O}-\mathrm{Cl}$
Ion-induced dipole		Ion chargepolarizable e^{-} cloud	3-15	$\mathrm{Fe}^{2+} \cdots \mathrm{O}_{2}$
Dipole-induced dipole		Dipole chargepolarizable e^{-} cloud	2-10	$\mathrm{H}-\mathrm{Cl} \cdots \mathrm{Cl}-\mathrm{Cl}$
Dispersion (London)		Polarizable e^{-} clouds	0.05-40	$F-F \cdots F-F$

dipole-dipole forces.

The positive pole of one polar molecule attracts the negative pole of another.

Figure $12.11^{\text {AHMD TDUNDO }}$ Dipole moment and boiling point.
\square Dipole moment (D x 100)
\square Boiling point (K)

2-34

The Hydrogen Bond

Hydrogen bonding is possible for molecules that have a hydrogen atom covalently bonded to a small, highly electronegative atom with lone electron pairs, specifically N, O, or F.

An intermolecular hydrogen bond is the attraction between the \boldsymbol{H} atom of one molecule and a lone pair of the \mathbf{N}, \mathbf{O}, or \mathbf{F} atom of another molecule.

Figure 12.12 Hydrogen bonding and boiling point.

Sample Problem 12.3

Drawing Hydrogen Bonds Between Molecules of a Substance

PROBLEM: Which of the following substances exhibits H bonding? For any that do, draw the H bonds between two of its molecules.
(a) $\mathrm{C}_{2} \mathrm{H}_{6}$
(b) $\mathrm{CH}_{3} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{NH}_{2}$

PLAN: If the molecule does not contain N, O, or F it cannot form H bonds. If it contains any of these atoms covalently bonded to H , we draw two molecules in the pattern -B:----H-A.

SOLUTION:

(a) $\mathrm{C}_{2} \mathrm{H}_{6}$ has no N, O, or F , so no H -bonds can form.

Sample Problem 12.3

(b) $\mathrm{CH}_{3} \mathrm{OH}$ contains a covalent bond between O and H . It can form H bonds between its molecules:

Polarizability and Induced Dipoles

A nearby electric field can induce a distortion in the electron cloud of an atom, ion, or molecule.

- For a nonpolar molecule, this induces a temporary dipole moment.
- For a polar molecule, the field enhances the existing dipole moment.

The polarizability of a particle is the ease with which its electron cloud is distorted.

Trends in Polarizability

Smaller particles are less polarizable than larger ones because their electrons are held more tightly.

Polarizability increases down a group because atomic size increases and larger electron clouds distort more easily.

Polarizability decreases across a period because of increasing $Z_{\text {eff }}$.

Cations are smaller than their parent atoms and less polarizable; anions show the opposite trend.

Figure 12.13 Dispersion forces among nonpolar particles.

A. When atoms are far apart they do not influence one other.

B. When atoms are close together, the instantaneous dipole in one atom induces a dipole in the other.

C. The process occurs throughout the sample.

Dispersion (London) Forces

Dispersion forces or London forces arises when an instantaneous dipole in one particle induces a dipole in another, resulting in an attraction between them.

Dispersion forces exist between all particles, increasing the energy of attraction in all matter.

Dispersion forces are stronger for more polarizable particles.
In general, larger particles experience stronger dispersion forces than smaller ones.

Figure 12.14 Molar mass and trends in boiling point.

Dispersion forces are stronger for larger, more polarizable particles.

Polarizability correlates closely with molar mass for similar particles.

$\begin{array}{r} 7 \mathrm{~A} \\ (17) \\ \hline \end{array}$	$\begin{gathered} 8 \mathrm{~A} \\ (18) \end{gathered}$
Formula Model Molar mass Boiling point (K)	$\begin{gathered} \mathrm{He} \\ 4.003 \\ 4.22 \end{gathered}$
$\begin{gathered} F_{2} \\ 38.00 \\ 85.0 \end{gathered}$	Ne 20.18 27.1
$\begin{gathered} \mathrm{Cl}_{2} \\ 70.91 \\ 239 \end{gathered}$	Ar 39.95 87.3
$\begin{gathered} \mathrm{Br}_{2} \\ 159.8 \\ 333 \end{gathered}$	$\begin{gathered} \mathrm{Kr} \\ 83.80 \\ 120 \end{gathered}$
$\begin{gathered} \mathbf{I}_{2} \\ 253.8 \\ 458 \end{gathered}$	$\begin{gathered} \mathrm{Xe} \\ 131.3 \\ 165 \end{gathered}$

Figure 12.15 Molecular shape, intermolecular contact, and boiling point.

n-Pentane, $\mathrm{bp}=36.1^{\circ} \mathrm{C}$
There are more points at which dispersion forces act.

There are fewer points at which dispersion forces act.

Neopentane, $b p=9.5^{\circ} \mathrm{C}$

Figure 12.16 Determining the intermolecular forces in a sample.

DISPERSION FORCES ALSO PRESENT

Sample Problem 12.4

Predicting the Types of Intermolecular Forces
PROBLEM: For each pair of substances, identify the key bonding and/or intermolecular force(s), and predict which one of the pair has the higher boiling point:
(a) MgCl_{2} or PCl_{3} (b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ or $\mathrm{CH}_{3} \mathrm{~F} \quad$ (c) $\mathrm{CH}_{3} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(d) Hexane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ or 2,2-dimethylbutane

PLAN: We examine the formulas and structures for key differences between the members of each pair: Are ions present? Are molecules polar or nonpolar? Is N, O, or F bonded to H? Do molecular compounds have different masses or shapes?

Sample Problem 12.4

Remember that:

- Bonding forces are stronger than nonbonding (intermolecular) forces.
- Hydrogen bonding is a strong type of dipole-dipole force.
- Dispersion forces are decisive when the difference is molar mass or molecular shape.

SOLUTION:

(a) MgCl_{2} consists of Mg^{2+} and Cl^{-}ions held together by ionic bonding forces; PCl_{3} consists of polar molecules, so intermolecular dipoledipole forces are present. The ionic bonding forces in MgCl_{2} are stronger than the dipole-dipole forces in PCl_{3}.
MgCl_{2} has a higher boiling point than PCl_{3}.

Sample Problem 12.4

(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{~F}$ both consist of polar molecules of about the same molar mass. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ has covalent $\mathrm{N}-\mathrm{H}$ bonds, so it can form H bonds between its molecules. $\mathrm{CH}_{3} \mathrm{~F}$ contains a C-F bond but no $\mathrm{H}-\mathrm{F}$ bond, so dipole-dipole forces occur but not H bonds.

$\mathrm{CH}_{3} \mathrm{NH}_{2}$ has a higher boiling point than $\mathrm{CH}_{3} \mathrm{~F}$.

Sample Problem 12.4

(c) $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ are both polar molecules and both contain a covalent $\mathrm{O}-\mathrm{H}$ bond. Both can therefore form \mathbf{H} bonds.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ has a larger molar mass than $\mathrm{CH}_{3} \mathrm{OH}$ and its dispersion forces are therefore stronger.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ has a higher boiling point than $\mathrm{CH}_{3} \mathrm{OH}$.

Sample Problem 12.4

(d) Hexane and 2,2-dimethylbutane are both nonpolar molecules and therefore experience dispersion forces as their only intermolecular force. They have equal molar masses but different molecular shapes.

2,2-Dimethylbutane
Hexane
Cylindrical hexane molecules make more intermolecular contact than the more compact 2,2-dimethylbutane molecules.

Hexane has a higher boiling point than 2,2-dimethylbutane.

Sample Problem 12.4

CHECK:

The actual boiling points show our predictions are correct:
(a) $\mathrm{MgCl}_{2}\left(1412^{\circ} \mathrm{C}\right)$ and $\mathrm{PCl}_{3}\left(76^{\circ} \mathrm{C}\right)$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(-6.3^{\circ} \mathrm{C}\right)$ and $\mathrm{CH}_{3} \mathrm{~F}\left(-78.4^{\circ} \mathrm{C}\right)$
(c) $\mathrm{CH}_{3} \mathrm{OH}\left(64,7^{\circ} \mathrm{C}\right)$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\left(78.5^{\circ} \mathrm{C}\right)$
(d) Hexane $\left(69^{\circ} \mathrm{C}\right)$ and 2,2-dimethylbutane $\left(49.7^{\circ} \mathrm{C}\right)$

Remember that dispersion forces are always present, but in (a) and (b) they are much less significant than the other forces that occur.

A surface molecule experiences a net attraction downward. This causes a liquid surface to have the smallest area possible.

An interior molecule is attracted by others on all sides.

Surface tension is the energy required to increase the surface area of a liquid. The stronger the forces between the particles the higher the surface tension.

Table 12.3 Surface Tension and Forces Between Particles

Surface Tension

Substance Formula $\quad\left(\mathrm{J} / \mathrm{m}^{2}\right)$ at $20^{\circ} \mathrm{C} \quad$ Major Force(s)

Diethyl ether	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$	1.7×10^{-2}	Dipole-dipole; dispersion
Ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	2.3×10^{-2}	H bonding
Butanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	2.5×10^{-2}	H bonding; dispersion
Water	$\mathrm{H}_{2} \mathrm{O}$	7.3×10^{-2}	H bonding
Mercury	Hg	48×10^{-2}	Metallic bonding

Figurian mercury meniscus in glass.

© The McGraw-Hill Companies, Inc./Stephen Frisch Photographer
A. Water displays a concave meniscus.

B. Mercury displays a convex

Table 12.4 Viscosity of Water at Several Temperatures

Viscosity is resistance of a fluid to flow.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Viscosity $\left(\mathbf{N} \cdot \mathbf{s} / \mathbf{m}^{2}\right)^{*}$
20	1.00×10^{-3}
40	0.65×10^{-3}
60	0.47×10^{-3}
80	0.35×10^{-3}

*The units of viscosity are Newton-seconds per square meter.

The uniqueness naf water

H-bonding ability of water.

Each $\mathrm{H}_{2} \mathrm{O}$ molecule can form four H bonds to other molecules, resulting in a tetrahedral arrangement.

1- Solvent properties : its results of its polarity and hydrogen bond ability. dissolve ionic compounds through ion-dipole forces

2- Thermal properties : water has high specific heat capacity (water has so many strong hydrogen bonding.

3- surface properties of water : water has high surface tension and high capillary

4- Density of solid and liquid water : ice has hexagonal structure, this organization explain the negative slope of solid liquid line in phase diagram. The large space within ice give the Solid state lower density than the liquid.

Figure 12.20 The hexagonal structure of ice.

(c) Scott Camazine/Photo Researchers, Inc.

Ice has an open structure due to H bonding. Ice is therefore less dense than liquid water.

[^0]: *Listed alphabetically by metal name; the ions in boldface are most common.

[^1]: Bold face ions are most common.

[^2]: Transititond by
 1- Down a transition group, n increase , but shielding by an additional level of inner electrons results in only a small size increase from period 4 to 5 and non from 5 to 6 .
 2- Across a transition series, atomic size shrinks through the first two or three elements because of increasing the nuclear charge, but from then on, size remain relatively constant because the shielding by the inner d electrons counteract the increase in Zeff.
 3- Transition series affects atomic size in neighboring main groups, d electrons cause a size decrease from group 2A to group 3A.

